## Math 1300: Calculus I, Fall 2006 <br> Review for Midterm Exam 3

Exam 3 covers sections 4.4, 5.1-5.5, 5.7, 6.1, 6.4 and 6.5 out of our textbook. Do the following problems (including the problems marked with a $\bullet$ from our textbook) as part of your review. Be ready to state theorems and definitions on the exam.

1. Suppose $f(x)=P(x) / Q(x)$ is a rational function where $P(x)$ and $Q(x)$ share no common factors. Suppose further that $f(x)$ satisfies the following properties:
(1) $f^{\prime}(x)>0$ on $(-2,2)$
(2) $f(x)$ has a local maximum at the point $(-4,-3)$ and a local minimum at the point $(4,3)$
(3) $f^{\prime \prime}(x)<0$ on $(-\infty,-2) \cup(-2,0)$
(4) $f^{\prime \prime}(x)>0$ on $(0,2) \cup(2, \infty)$
(5) $f(x)$ is symmetric about the origin
(6) $f(x)$ has an oblique asymptote at $y=x / 2\left(\right.$ or $\left.y=\frac{1}{2} x\right)$
(7) $P(x)$ has a root of multiplicity 3 at $x=0$
(8) $Q(x)$ has roots at $x=2$ and $x=-2$.

Sketch a graph of $f(x)$, labelling any important points.

- Now do \#1 in the Quick Check and \#23 in the Exercises from section 5.3

2. Let $f(x)=|x|$ and $g(x)=\sin x$. Can L'Hôpital's Rule be used to evaluate $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ ? If so, what is the limit? If not, justify your answer.

- Now do \#35 and \#39 in section 4.4.

3. Find two numbers whose sum is 23 and whose product is a maximum.

- Now do \#5 and \#9 in section 5.5.

4. Evaluate $\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \frac{(k+2)(k+1)}{N(N+1)(2 N+1)}$.

- Now do \#23 and \#47 from section 6.4.

5. In this problem, we will find the volume of a certain infinite stack of cubes. Start with a cube that has sides of length 1 cm . On top of the first cube stack a second cube that has sides of length $1 / 2 \mathrm{~cm}$. On top of the second cube stack a third cube that has sides of length $1 / 4 \mathrm{~cm}$. Continue in this way, so that the length of the sides of each new cube is $1 / 2$ the length of the sides of the cube just below.
(a) Using sigma notation, write a formula for the volume of the first $n$ cubes.
(b) Now, using the fact below, find the volume of the infinite stack of cubes described above. Fact: $\sum_{k=0}^{n} \frac{1}{r^{k}}=\frac{r}{r-1}\left(1-\frac{1}{r^{n+1}}\right)$, where $r$ is a positive integer strictly greater than 1 . This is a special case of a sum called geometric sum.

- Now do $\# 47$ and $\# 59(a)$ in section 6.4.

6. Let $f(x)=x^{2} e^{x}$.
(1) Find the intervals on which $f$ is increasing or decreasing.
(2) Find the critical points of $f$ and determine for each point whether it is a relative maximum, relative minimum, or neither.
(3) Find the intervals of concavity and the inflection points of $f$.

- Now do \#1 in section 5.2.

7. Verify that $e^{x^{2}}>x^{2}$ by showing that the absolute minimum of $f(x)=e^{x^{2}}-x^{2}$ is strictly greater than zero. Why does this prove the desired inequality for all $x$ ?

- Now do \#11 and \#19 in section 5.4.

8. Let $f$ be differentiable on an open interval $I$, and let $\ell$ denote the tangent line to the graph of $f$ at $x=a$ for some $a$ in $I$. Use the Mean-Value Theorem to show that if $f$ is concave up on $I$, then on the interval $I$ the graph of $f$ is above the line $\ell$.

Hint: Suppose that the graph of $f$ has a point $P=(b, f(b))$ with $b$ in $I$ such that $P$ lies below or on the tangent line $\ell$. Argue that
(1) if $a<b$, then there exists $c$ in $(a, b)$ such that $f^{\prime}(a) \geq f^{\prime}(c)$;
(2) if $b<a$, then there exists $c$ in $(b, a)$ such that $f^{\prime}(c) \geq f^{\prime}(a)$.

- Now do \#21 and $\# 23(a)$ in section 5.7.

9. Let $f(x)=x+\frac{1}{x}$ on $[-1,2]$. Show that there is no point $c$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ on the given interval. Which hypothesis of the mean value theorem fails to hold?

- Now do $\# 3$ and $\# 11$ in section 5.7.

10. True or False? Justify your answer: If $f^{\prime \prime}(x)$ is defined and positive for all $x$, then $f(x)$ has exactly one relative minimum.

- Now do $\# 17$ and $\# 23$ in section 5.2.

11. Find $\int_{1}^{11} f(x) d x$ if $\int_{0}^{1} f(x) d x=-7$ and $\int_{0}^{11} f(x) d x=29$.

- Now do \#11 in section 6.5.

12. Write

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{3}{n} e^{1+3 k / n}
$$

as a definite integral. Do not evaluate the integral.

- Now do \#21 and \#25 in section 6.5.

13. List all critical points and find the absolute maximum and minimum values of $f(x)=2 x-3 x^{2 / 3}$ on the interval $[-1,3]$.

- Now do \#13 in section 5.4.

14. Evaluate $\lim _{x \rightarrow 0^{+}} x^{x}$.

- Now do \#11 and \#21 in section 4.4.

15. Find the intervals on which $f(x)=x^{17}+x^{9}+x+1$ is increasing and decreasing.

- Now do \#5 and \#7 in section 5.1.

16. Suppose that $a$ is constant and $n$ is a positive integer. What can you say about the existence of inflection points of the function $f(x)=(x-a)^{n}$ ? Justify your answer.

- Now do \#23 in section 5.1.

17. Sketch the graph of $f(x)=\frac{x^{\frac{1}{3}}}{1-x}$.

- Now do \#18 in section 5.3. The answer will be provided on the answer sheet since it is an even-numbered problem.

18. A dune buggy is in the desert at a point $A$ located 40 km from a point $B$. There is a 50 km road connecting $B$ to a point $D$ that is perpendicular to the line connecting $A$ to $B$. The dune buggy is trying to get to point $D$ as quickly as possible. It can cut across the desert and get on the road to $D$ at any point between $B$ and $D$. If the dune buggy can travel at $45 \mathrm{~km} / \mathrm{h}$ on the desert and $75 \mathrm{~km} / \mathrm{h}$ on the road, how far from $B$ should the dune buggy get on the road to $D$ to minimize time?

- Now do \#21 and \#43(a) in section 5.5.

19. Here is a function and its derivatives.

$$
f(x)=\frac{x^{2}-2}{x} \quad f^{\prime}(x)=\frac{x^{2}+2}{x^{2}} \quad f^{\prime \prime}(x)=\frac{-4}{x^{3}} .
$$

Do the following:
(1) Find all intercepts.
(2) Find all critical points and list if they are relative maxima, relative minima, cusps, vertical tangent lines, or none of these.
(3) List the intervals where $f(x)$ is increasing, decreasing, concave up, and concave down
(4) List, and give equations for, any asymptotes. (Vertical, Horizontal, Oblique or curvilinear)
(5) Graph $f(x)$.

- Also do $\# 15, \# 17$ and $\# 19$ in section 6.1.


## True or False? Justify your answer.

(a) If $f$ and $g$ are differentiable on an open interval containing $c$, except possibly at $x=c$, and $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is an indeterminate form of type $\infty / \infty$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=$ $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
(b) If $f$ is increasing and differentiable on $(a, b)$, then $f^{\prime}(x)>0$ for all $x$ in $(a, b)$.
(c) If $f$ is differentiable, but not increasing on an open interval $I$, then $f^{\prime}(x) \leq 0$ for some $x$ in $I$.
(d) If $f^{\prime}(c)=0$, then $f$ has a relative extremum at $x=c$.
(e) If $f$ has an inflection point at $x=c$, then $f^{\prime \prime}(c)=0$.
(f) If $f^{\prime \prime}(x)$ is continuous on an open interval $I$ and $f^{\prime \prime}(c) \neq 0$ for all $x \in I$, then $f$ is either concave up on $I$ or $f$ is concave down on $I$.
(g) Every rational function has an asymptote that is a polynomial function.
(h) If a function has a vertical tangent line, then it has a vertical asymptote.
(i) If $f$ and $g$ are differentiable everywhere, both have $y$-intercept 0 , and $g^{\prime}(x)=$ $2 f^{\prime}(x)$ for all $x$ in $(-\infty, \infty)$, then $g(x)=2 f(x)$ for all $x$ in $(-\infty, \infty)$.
(j) If $f$ is differentiable on the open interval $(a, b)$, then there exists $c$ in $(a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.

