MATH 1300: CALCULUS 1

September 20, 2006

MIDTERM 1

I have	e neither given nor received aid on	this exam.
	Name:	
001	L. Mayhew(8am)	012 J. Fuhrmann(11am)
002	J. KISH (8AM)	013 B. Wang(11am)
003	P. Newberry(8AM)	\bigcirc 014 D. Ernst(12pm)
004	A. Spina (8am)	015 C. Moody(1PM)
005	M. Hedges (9Am)	\bigcirc 016 J. Pearson
006	M. Stackpole	\bigcirc 017 J. Boisvert
007	E. Mankin (9am)	\bigcirc 018 R. Chestnut
008	N. Flores(9AM)	019 G. SURMAN (4PM)
009	A. Szendrei(9am)	020 N. Sagullo(8AM)
010	A. Szendrei(10am)	

Box your answers.

If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show all of your work, and give adequate explanations. No calculators, no books, no notes are allowed on this exam.

DO NOT WRITE IN THIS BOX!				
Problem	Points	Score		
1	15 pts			
2	20 pts			
3	25 pts			
4	20 pts			
5	20 pts			
6	25 pts			
7	15 pts			
8	10 pts			
TOTAL	150 pts			

1. Sketch the graph of the function $f(x) = -\sin^{-1}\left(1 + \frac{x}{2}\right)$ by translating, reflecting, compressing, stretching the graph of the inverse sine function.

- **2.** Let $f(x) = \ln(1-x)$ and $g(x) = \sqrt{x}$.
 - (a) Find a formula for the composite function $g \circ f$, and determine its domain.

$$\begin{split} (g \circ f)(x) &= g(f(x)) = \sqrt{\ln(1-x)} \,. \\ \text{Domain:} \quad & \{x : x < 1 \text{ and } \ln(1-x) \geq 0\} \\ &= \{x : x < 1 \text{ and } 1-x \geq 1\} \\ &= \{x : x \leq 0\} \\ &= (-\infty, 0] \,. \end{split}$$

(b) Find a formula for the composite function $f \circ g$, and determine its domain.

$$\begin{split} (f \circ g)(x) &= f(g(x)) = \ln(1 - \sqrt{x}) \,. \\ \text{Domain:} \quad & \{x : x \geq 0 \text{ and } 1 - \sqrt{x} > 0\} \\ &= \{x : x \geq 0 \text{ and } x < 1\} \\ &= [0, 1) \,. \end{split}$$

- **3.** Let f be the function with domain $[2, \infty)$ defined by $f(x) = x^2 2x 3$.
 - (a) Explain why the function f has an inverse function f^{-1} .

```
To see that f has an inverse function we have to check that it is one-to-one.

f is one-to-one, because f(x) = (x-1)^2 - 4, x \ge 2,

so f is increasing.
```

(b) Find the domain and the range of the inverse function f^{-1} .

Domain of f^{-1} = Range of $f = [-3, \infty)$. Range of f^{-1} = Domain of $f = [2, \infty)$.

(c) Find a formula for f^{-1} .

$$y = x^{2} - 2x - 3$$

$$0 = x^{2} - 2x - (3 + y)$$

$$x = \frac{2 \pm \sqrt{4 + 4(3 + y)}}{2} = 1 \pm \sqrt{4 + y}$$

For $y \ge -3$ we must have $x \ge 2$, therefore $x = 1 + \sqrt{4+y}$. Hence $f^{-1}(y) = 1 + \sqrt{4+y}$, $y \ge -3$, or $f^{-1}(x) = 1 + \sqrt{4+x}$, $x \ge -3$.

(d) Determine whether or not the function $g(x) = x^4 - 5x^2$ (with its natural domain) has an inverse function. Justify your answer. (You are **not** asked to find a formula for g^{-1} .)

g does not have an inverse function, because it is not one-to-one; for example, $g(-1)=g(1)=-4\,.$

(e) Determine whether or not the function $h(x) = \frac{x+1}{x-1}$ (with its natural domain) has an inverse function. Justify your answer. (You are **not** asked to find a formula for h^{-1} .)

h has an inverse function. To show this we have to check that h is one-to-one, that is, its graph passes the horizontal line test. The graph of $h(x) = \frac{x+1}{x-1} = 1 + \frac{2}{x-1}$ is obtained from the graph of $y = \frac{1}{x}$ by vertical stretching and vertical and horizontal translations. Since the graph of $y = \frac{1}{x}$ passes the horizontal line test, it follows that the graph of h also passes the horizontal line test.

4. Compute:

(a)
$$\cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2}.$$

(b)
$$\ln\left(\frac{1}{\sqrt{e}}\right) =$$

 $\ln(e^{-1/2}) = -\frac{1}{2}.$

(c)
$$e^{(\ln 5 + \ln \frac{1}{7})} = e^{\ln(5 \cdot \frac{1}{7})} = \frac{5}{7}.$$

(d)
$$100 \log_2(\sqrt[50]{8}) =$$

$$100\log_2(8^{1/50}) = \frac{100}{50}\log_2(8) = \frac{100}{50} \cdot 3 = 6.$$

5. Let

$$f(x) = \begin{cases} e^x & \text{if } x > 1, \\ 1 & \text{if } x = 1, \\ \frac{1}{x-1} & \text{if } x < 1. \end{cases}$$

(a) Sketch the graph of f.

(b) Use the graph to find the following limits. (The possible answers are: a number or ∞ or $-\infty$; write 'none' if none of these applies.)

$$\lim_{x \to 1} f(x) =$$

none.
$$\lim_{x \to 1^+} f(x) =$$

 $e.$
$$\lim_{x \to 1^-} f(x) =$$

 $-\infty.$
$$\lim_{x \to \infty} f(x) =$$

 $\infty.$
$$\lim_{x \to -\infty} f(x) =$$

 $0.$

6. Compute the following limits.

(The possible answers are: a number or ∞ or $-\infty$; write 'none' if none of these applies.)

(a)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 4x + 3} = \lim_{x \to 3} \frac{(x+1)(x-3)}{(x-1)(x-3)} = \lim_{x \to 3} \frac{x+1}{x-1} = \frac{4}{2} = 2.$$

(b)
$$\lim_{x \to 3^{-}} \frac{x^2 - 2x - 3}{x^2 - 6x + 9} =$$

 $\lim_{x \to 3^{-}} \frac{(x+1)(x-3)}{(x-3)^2} = \lim_{x \to 3^{-}} \frac{x+1}{x-3} = \lim_{x \to 3^{-}} \left(1 + \frac{4}{x-3}\right) = -\infty.$

(c)
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9} =$$

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{(\sqrt{x} - 3)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}.$$

(d)
$$\lim_{x \to \infty} \frac{2x^3 + 3}{5x^3 - 4x^2 + 6} = \lim_{x \to \infty} \frac{2 + \frac{3}{x^3}}{5 - \frac{4}{x} + \frac{6}{x^3}} = \frac{2}{5}.$$

(e)
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1} - 1}{2x + 3} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1} - \frac{1}{-x}}{\frac{2x}{-x} + \frac{3}{-x}} = \lim_{x \to -\infty} \frac{\sqrt{3} + \frac{1}{x^2} - \frac{1}{-x}}{-2 + \frac{3}{-x}} = \frac{\sqrt{3}}{-2} = -\frac{\sqrt{3}}{2}.$$

- 7. TRUE or FALSE? Justify your answer.
 - (a) If two functions f and g have the same domain, then f and g are equal.

```
TRUE FALSE (circle one)
Justify:
For example, the functions f(x) = x and g(x) = x^2 have the same domain (-\infty, \infty), but they are different functions, since f(2) \neq g(2).
```

- (b) $\sin^{-1}(\sin x) = x$ for all real numbers x. TRUE FALSE (circle one) Justify: For example, $\sin^{-1}(\sin \pi) = \sin^{-1} 0 = 0 \neq \pi$.
- (c) If a function f(x) has a limit as x approaches 2, then the function

$$g(x) = \begin{cases} 0 & \text{if } x \leq 1, \\ 3 & \text{if } x = 2, \\ f(x) & \text{for all other } x \text{ in the domain of } f \end{cases}$$

```
also has a limit as x approaches 2.
```

```
TRUE FALSE (circle one)
```

Justify:

 $\lim_{x\to 2}f(x)=\lim_{x\to 2}g(x),$ since f(x)=g(x) for all x such that $|x-2|<1,\ x\neq 2.$

8. State the theorem on the relationship between one-sided and two-sided limits.

For arbitrary function f and real numbers a and L, $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$.