
Dana C. Ernst Research Statement

This research statement is organized as follows. Section 1 provides a quick summary of my research interests.
Then in Section 2, I provide a more in-depth description of three current research projects: (i) conjugacy
and reducibility in Coxeter groups, (ii) diagram algebras and Kazhdan–Lusztig theory, and (iii) mathematics
education and IBL. In Section 3, I summarize recent and ongoing research with undergraduates. Lastly, for
readers desiring a more detailed description of (i) and (ii) above, Sections 4 and 5 elaborate on my current
results and plans for future research in these areas. If a reader is only interested in an overview of my
research interests, they can safely skip reading Sections 4 and 5.

1 Introduction

My primary research interests are in the interplay between combinatorics and algebraic structures. More
specifically, I study the combinatorics of Coxeter groups and their associated Hecke algebras, Kazhdan–
Lusztig theory, generalized Temperley–Lieb algebras, diagram algebras, and heaps of pieces. By employing
combinatorial tools such as diagram algebras and heaps of pieces, one can gain insight into algebraic structures
associated to Coxeter groups, and, conversely, the corresponding structure theory can often lead to surpris-
ing combinatorial results. The combinatorial nature of my research naturally lends itself to collaboration
with advanced undergraduate students, and I strive to incorporate undergraduates in my research whenever
possible.

I am also passionate about undergraduate mathematics education and recently my research interests have
included topics in this area. In particular, I am studying the effectiveness of a collaborative approach to
inquiry-based learning (IBL) in proof-based courses. Furthermore, I am interested in the use of technology,
such as Sage, wikis, and other Web2.0 technology, to aid in the learning of mathematics. Sage is a free open-
source mathematics software system whose mission is to create a viable alternative to Maple, Mathematica
and Matlab.

2 Overview of research program

2.1 Conjugacy and reducibility in Coxeter groups

This section describes ongoing joint work with R.M. Green (University of Colorado) and M. Macauley (Clem-
son University).

Matsumoto’s theorem states that any two reduced expressions of the same element in a Coxeter group differ
by a sequence of braid relations, which elegantly solves the word problem. Cyclically shifting a reduced
expression is conjugation by the initial letter. Now, consider the following question.

Do two cyclically reduced expressions of conjugate elements differ by a sequence of braid relations
and cyclic shifts?

This question is in a sense a “cyclic version” of Matsumoto’s theorem, and while the answer is “no,” it
seems to “usually be true.” Characterizing when the cyclic version of Matsumoto’s theorem holds is a
problem that is rich in combinatorics, and resolving it would solve the conjugacy problem for Coxeter groups
combinatorially. This question arose in an attempt to cast several recent results on conjugacy in a more
natural setting. Recently, D. Speyer proved that in infinite irreducible Coxeter groups, powers of Coxeter
elements are reduced [31], and then H. Eriksson and K. Eriksson used that result to give a combinatorial
solution of the conjugacy problem for Coxeter elements [6], finishing a problem first posed in H. Eriksson’s
1994 PhD thesis [5]. An unstated corollary of this work is an affirmative answer to the cyclic version of
Matsumoto’s theorem for Coxeter elements. That is, for Coxeter elements, any two reduced expressions up
to conjugacy are equivalent under the equivalence generated by braid relations and cyclic shifts. We are
certain that these results are special cases of a broader mathematical framework that has never been studied
directly. In particular, Coxeter elements have the property that every generator appears precisely once, but
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this is much stronger than what was needed for the aforementioned results. One of our goals is to extend
current results to a more unifying general statement for arbitrary conjugacy classes. The first generalization
of Coxeter elements for which this combinatorics applies are the cyclically fully commutative (CFC) elements,
introduced by Green, Macauley, and myself in recent work. Loosely speaking, these are the elements whose
reduced expressions under the “braid + cyclic shift” equivalence all lie in the same equivalence class, and
they are rich in combinatorics. The most general case would be to extend these results from the CFC to the
cyclically reduced elements.

Preliminary investigations have yielded a wealth of new research problems and a clear path of how to attack
the question posed above. I have coauthored one paper [3] in this area. Our main result in [3] extends Speyer’s
result to the CFC elements for a large class of groups that contains all Weyl and simply-laced Coxeter groups
(see Theorem 1 in Section 4.3). Our result supports the claim that CFC elements are a natural generalization
of Coxeter elements, and it is a foundation for our work on the cyclic version of Matsumoto’s theorem and
the conjugacy problem.

2.2 Diagram algebras and Kazhdan–Lusztig theory

This section describes results related to my PhD thesis [8], which has since produced three papers [9, 10, 11].
The first paper appears in print, the second is currently under review, and the third is awaiting acceptance
of the second paper. I outline further research in this area in Section 5.2.

The (type A) Temperley–Lieb algebra TL(A), invented by H.N.V. Temperley and E.H. Lieb in 1971 [33], is
a finite dimensional associative algebra, which arose in statistical mechanics. R. Penrose and L.H. Kauffman
showed that this algebra can be realized as a particular diagram algebra [26, 30], which is a type of associative
algebra with a basis given by certain diagrams in which the multiplication rule is given by applying local
combinatorial rules to the diagrams. In 1987, V.F.R. Jones showed that TL(A) occurs naturally as a quotient
of the type A Hecke algebra, H(A), whose underlying group is the symmetric group [25]. Jones introduced a
Markov trace on H(A) that is degenerate (the trace is the matrix trace of a transfer matrix algebra), but its
radical is an ideal of H(A), and so we obtain a generically nondegenerate trace on the quotient algebra. This
quotient algebra is isomorphic to TL(A).

Eventually, this realization of the Temperley-Lieb algebra as a Hecke algebra quotient was generalized by
J.J. Graham in [17] to the case of an arbitrary Coxeter graph Γ, which we denote by TL(Γ). Subsequently,
several diagrammatic representations of these generalized Temperley–Lieb algebras have been constructed for
various Coxeter systems. In a series of papers [18, 19, 20, 21], R.M. Green constructed faithful diagrammatic
representations of TL(Γ), where Γ is of type B,D, or H. Martin and Saleur introduced a diagram calculus
for the generalized Temperley–Lieb of type affine A [29], but faithfulness was later proved by Green and C.K.
Fan in [15]. In [35], T. tom Dieck described a diagrammatic representation of the generalized Temperley–Lieb
algebra of type E, which was proved to be faithful in a recent paper by Green [23]. Besides having a point of
contact with physics, knot theory, and the theory of subfactors, these diagrammatic representations provide
combinatorially tractable models for Kazhdan–Lusztig theory. In this vein, the main goal of my PhD thesis
[8] was to construct a faithful diagrammatic representation of a generalized Temperley–Lieb algebra of type
affine C, denoted by TL(C̃).

In [10] and [11], I construct an associative diagram algebra and prove that it is a faithful representation of
TL(C̃). Since Coxeter groups of type C̃ have an infinite number of fully commutative elements (in the sense of
Stembridge), TL(C̃) is infinite dimensional. This is the first faithful representation of an infinite dimensional
non-simply-laced generalized Temperley–Lieb algebra (in the sense of Graham). In the finite dimensional
case, counting arguments are employed to prove faithfulness, but these techniques are not available in the
type C̃ case. Instead, we rely on my classification in [9] of the “non-cancellable” elements in Coxeter groups
of types B and C̃.
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Our motivation for studying the non-cancellable elements stems from the fact that computation involving the
monomial basis elements of the generalized Temperley–Lieb algebra of W indexed by non-cancellable elements
is “well-behaved.” In fact, the classification of the non-cancellable elements in [9] provides the foundation
for inductive arguments used to prove the faithfulness of our diagram algebra. The classification of the non-
cancellable elements in a Coxeter group of type B verifies Fan’s unproved claim in [14] about the set of fully
commutative elements in a Coxeter group of type B having no generator in the left or right descent set that
can be left or right cancelled, respectively.

2.3 Mathematics education and IBL

For three consecutive semesters, I taught an introduction to proof course to mathematics majors at Plymouth
State University. The first two iterations of the course were taught via a traditional lecture-based approach,
while the third instance of the course was taught using an IBL approach with an emphasis on collaboration.
When I taught an abstract algebra course with students from both styles of the introduction to proof course,
anecdotal evidence suggested that the students taught via IBL were stronger proof-writers and more indepen-
dent as learners. Inspired by the apparent effectiveness of IBL, I adopted this approach in my real analysis
course and chose to study it with mathematics education specialist A. Hodge (University of Nebraska at Om-
aha). We recently submitted a short paper [12] that presents quantitative data supporting the effectiveness
of a collaborative IBL approach, and qualitative data describing student perception of knowledge acquisition
with regards to proof in an upper-level mathematics course.

In the spring of 2011, A. Schultz (Wellesley College) and I chose to adopt an IBL approach in our number
theory courses at our respective universities. Two times during the semester, students in each class submitted
proofs of 2–3 theorems to be peer reviewed by students in the other class. Each student was then responsible
for typing up an anonymous and formal referee report of the submitted theorems, which were then returned
to the respective students. Together with A. Hodge, we developed a pre- and post-test survey to study the
impact of this form of peer review, as well as student perception of the effectiveness of IBL, in general. We
are currently in the process of writing a short paper [13] in which we will relay the similarities and differences
between our approaches to IBL in each course, describe the details of the peer review project, and discuss the
results of the survey as it relates to peer review.

3 Undergraduate research

As mentioned in the introduction, the combinatorial nature of my research naturally lends itself to collabo-
ration with undergraduates. Mentoring undergraduate research combines my passion for teaching with my
desire to remain active in mathematics research. Many aspects of my research involve combinatorial represen-
tations that are visually appealing for students. Not only are these representations nice to look at, but they
can provide insight into the underlying algebraic structure that we may not have otherwise noticed. Often
problems in my research can be distilled down to asking questions about the visual representations, which
provides a nice entry point for undergraduates to tackle open problems.

Before describing a few recent projects, we need a little background. In Kazhdan-Lusztig theory, it is often
useful to work with elements that are either a product of commuting generators, or have a reduced expression
beginning or ending with a pair of non-commuting generators. Motivated by this claim, we say that w in
a Coxeter group W is T-avoiding if no reduced expression for w either begins or ends with a pair of non-
commuting generators.

3.1 Exploration of T-avoiding elements in Coxeter groups of type F

During the 2011–2012 academic year, I am mentoring Ryan Cross, Katie Hills-Kimball, and Christie Quaranta
on an original research project aimed at exploring the T-avoiding elements in Coxeter groups of type F .
Preliminary results have yielded an infinite class of elements that are T-avoiding but not equal to a product
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of commuting generators. The students are attempting to prove that their list is exhaustive and will present
their findings during at least one conference.

3.2 Classification of T-avoiding permutations in Coxeter groups of types A and B

During the 2010–2011 academic year, I mentored Joseph Cormier, Zachariah Goldenberg, Jessica Kelly, and
Christopher Malbon on an original research project that classified of the T-avoiding permutations in Coxeter
groups of types A and B. The students proved that in Coxeter groups of type A and B, an element is T-
avoiding if and only if it is the product of commuting generators. This result is already known, but our proof
is constructive and only uses elementary results. The students made the following presentations:

• Classification of the T-avoiding permutations and generalizations to other Coxeter groups, Undergradu-
ate Student Poster Session, Joint Mathematics Meetings 2012, Boston, MA; January 6, 2012.

• Classification of the T-avoiding permutations and generalizations to other Coxeter groups, Combinatorics
of Coxeter Groups Special Session, Spring 2011 Eastern Sectional Meeting of the AMS, College of the
Holy Cross, Worcester, MA; April 10, 2011.

• Classification of the T-avoiding permutations, 2011 Hudson River Undergraduate Mathematics Confer-
ence, Skidmore College, Saratoga Springs, NY; April 16, 2011.

We are currently in the progress of writing up our results [4].

3.3 Counting generators in Temperley–Lieb diagrams of types A and B

In the spring of 2010, I mentored Sarah Otis and Leal Rivanis on a project that lies in the intersection of the
research described in Sections 2.2 and 2.1. The students obtained original results concerning Temperley–Lieb
diagram algebras of types A and B. In particular, we obtained a non-recursive method for enumerating
the number of generators occurring in the fully commutative element that indexes a given diagram. One
consequence of our results is a classification of the diagrams of the Temperley–Lieb algebras of types A and
B indexed by CFC elements. The students made the following presentation:

• Counting generators in type B Temperley–Lieb diagrams, 2010 Hudson River Undergraduate Mathe-
matics Conference, Keene State College, Keene, NH; April 17, 2010.

4 Conjugacy and reducibility in Coxeter groups

This section elaborates on my work introduced in Section 2.1 and can be safely skipped if the
reader is only interested in an overview of my research.

4.1 Preliminaries

A Coxeter group is a group W with a distinguished set of generating involutions S with presentation given
by 〈s1, . . . , sn : (sisj)

m(si,sj) = 1〉, where m(si, sj) = 1 if and only if i = j. The pair (W,S) is called a Coxeter
system, where S = {s1, . . . , sn}. A Coxeter system can be encoded by a unique Coxeter graph Γ which has
vertex set S and edges {s, t} for each m(s, t) ≥ 3. Moreover, each edge is labeled with the corresponding
m(s, t), although typically the labels of 3 are omitted because they are the most common. If Γ is connected,
then (W,S) is irreducible. If a vertex s in Γ has degree 1, call it an endpoint. An endpoint s has a unique
t ∈ S for which m(s, t) ≥ 3, and we call m(s, t) the weight of the endpoint. If this weight is greater than 3,
we say that the endpoint is large.

Let S∗ denote the free monoid over S. A word sx1sx2 · · · sxm ∈ S∗ that is equal to w ∈ W when considered
as a group element is called an expression for w. If m is minimal, we say that the expression is a reduced
expression for w, and call m the length of w, denoted `(w). If every cyclic shift of a reduced expression is a
reduced expression for some element in W , we say that the reduced expression is cyclically reduced. A group
element w ∈W is cyclically reduced if every reduced expression for w is cyclically reduced.
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For w ∈ W , we say that s ∈ S is initial (respectively, terminal) if `(sw) < `(w) (respectively, `(ws) < `(w)).
It is well-known that if s ∈ S, then `(sw) = `(w)± 1, and so `(wk) ≤ k · `(w). If equality holds for all k ∈ N,
we say that w is logarithmic. For each integer m ≥ 0 and distinct s, t ∈ S, define 〈s, t〉m = stst · · · where
the product on the right has m factors. The relation 〈s, t〉m(s,t) = 〈t, s〉m(s,t) is called a braid relation, and
additionally a short braid relation if m(s, t) = 2. The short braid relations generate an equivalence relation
on S∗, and the resulting equivalence classes are called commutation classes. An element w ∈ W is fully
commutative (FC) if all of its reduced expressions lie in the same commutation class, and we denote the set
of FC elements by FC(W ). Matsumoto’s theorem [16, Theorem 1.2.2] says that in a Coxeter group, any two
reduced expressions for the same group element differ by a sequence of braid relations. As a consequence of
Matsumoto’s theorem, it is well-defined to speak of the support of w ∈ W as the set of generators appearing
in any reduced expression for w. If the support of w equals all of S, then we say that w has full support. If
every connected component of the subgraph of Γ induced by the support of w describes an infinite Coxeter
group, then we say that w is torsion-free.

4.2 Cyclic version of Matsumoto’s theorem

Let W be a Coxeter group. We say that a subset W ′ ⊆W satisfies the cyclic version of Matsumoto’s theorem
if any two cyclically reduced expressions of conjugate group elements differ by braid relations and cyclic shifts.
One only needs to look at type An (the symmetric group Sn+1) to find an example where the cyclic version
of Matsumoto’s theorem fails: any two simple generators are conjugate, e.g., s1s2(s1)s2s1 = s2. However, for
longer words, such examples appear to be less common, and we would like to characterize exactly when they
can happen, which would establish when the cyclic version of Matsumoto’s theorem holds.

Matsumoto’s theorem implies that if w is FC then any two reduced expressions for w differ only by short braid
relations. The cyclic version asks when any two cyclically reduced expressions of conjugate group elements
differ only by short braid relations and cyclic shifts. This problem is rich in combinatorics, and it leads to the
definition of the cyclically fully commutative (CFC) elements, which can be thought of as the “cyclic analog”
of FC elements.

An example of an FC (and CFC) element is a Coxeter element, which is a product of all the generators of
S in some order. We denote the set of Coxeter elements by C(W ). Observe that conjugating a Coxeter
element c = sx1 · · · sxn by sx1 cyclically shifts the word to sx2 · · · sxnsx1 . We say that two Coxeter elements
c, c′ ∈ C(W ) are κ-equivalent if they are conjugate by a word w = sx1 · · · sxk

such that length is preserved after
successive conjugation by sx1 , sx2 , . . . , sxk

. Though this is in general a stronger condition than just conjugacy,
a recent result by H. Eriksson and K. Eriksson [6] shows that they are equivalent for Coxeter elements, thus
establishing the cyclic version of Matsumoto’s theorem for Coxeter elements. The proof of this rests on a
recent result that Coxeter elements in infinite irreducible Coxeter groups are logarithmic. This easy-to-state
result is quite non-trivial, and both known proofs constitute an entire paper each [7, 31].

4.3 Cyclically fully commutative elements

We say that an element w ∈ W is cyclically fully commutative (CFC) if every cyclic shift of every reduced
expression of w is a reduced expression for an FC element. The CFC elements are precisely the elements whose
reduced expressions can be written in a circle without any 〈s, t〉m(s,t) subwords, where m(s, t) > 2. It is clear
that C(W ) ⊆ CFC(W ) ⊆ FC(W ). In 2007, M. Kleiner and A. Pelley used techniques from representation
theory to prove that in an infinite irreducible simply-laced Coxeter group (i.e. all m(s, t) ≤ 3), Coxeter
elements are logarithmic [28]. Kleiner later suggested to Speyer that he seek a purely combinatorial proof of
this result, which he did in 2007 [31], dropping the simply-laced condition in the process. In all of these cases,
the distinguishing property of a Coxeter element, that every generator occurs precisely once, is convenient
but stronger than necessary. The following theorem extends Speyer’s result to the CFC elements for a large
class of groups that contains all Weyl and simply-laced groups.
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Theorem 1 (Boothby–Burkert–Eichwald–Ernst–Green–Macauley [3]). Let W be a Coxeter group without
large odd endpoints. An element w ∈ CFC(W ) is logarithmic if and only if it is torsion-free.1

In [32], J. Stembridge classified the Coxeter groups that contain only finitely many FC elements, which he
called the FC-finite groups. Similarly, we define the CFC-finite groups to be those that contain only finitely
many CFC elements. While it is clear that the every FC-finite group is also CFC-finite, we also proved that
a CFC-finite group is also FC-finite.

In [3], we show that for all cases except the dihedral groups and type H, the CFC elements are precisely the
Coxeter elements in the standard parabolic subgroups. It is known that the FC elements in type A are the
321-avoiding permutations [2]. A 2007 result by B.E. Tenner [34] applied to our classification of the CFC
elements in CFC-finite groups tells us that the CFC elements in type A are the permutations with Boolean
principal order ideals, which satisfy the following pattern avoidance condition.

Theorem 2 (Boothby–Burkert–Eichwald–Ernst–Green–Macauley [3]). An element w ∈W (An) is CFC if and
only if w is 321-avoiding and 3412-avoiding.

4.4 Summary of research problems

The research problems described below all fit into the broad goal of studying reducibility and conjugacy in
Coxeter groups.

Problem 1. Determine whether we can loosen the restrictions on Theorem 1. In particular, is it true that
a CFC element is logarithmic if and only if it is torsion-free? It is tempting to conjecture this for purely
aesthetic reasons, and it may in fact be true. However, we do not have any firm mathematical evidence.

Problem 2. Formulate and prove a cyclic version of Matsumoto’s theorem. This would be a combinatorial
solution to the conjugacy problem for Coxeter groups. The first step is to extend the techniques used with
Coxeter elements to CFC elements.

Problem 3. Give complete combinatorial characterizations of the CFC elements and their conjugacy classes
in the CFC-finite groups. In particular, one goal would be to state and prove necessary and sufficient conditions
for CFC elements in a CFC-finite group to be conjugate. Another goal is to classify the CFC elements in each
of the CFC-finite groups (types B, D, E, F , H, I2(m)) by generalized pattern avoidance [1].

5 Diagram algebras and Kazhdan–Lusztig theory

Below, I provide more details about my research in the area of diagram algebras and its connection to
Kazhdan–Lusztig theory.

5.1 Generalized Temperley–Lieb algebras

Let (W,S) be a Coxeter system with Coxeter graph Γ. The associated Hecke algebra H(Γ) is an algebra with
a basis given by {Tw : w ∈ W}, and with relations that deform the relations of W by a parameter q. If we
set q to 1, we recover the group algebra of W . In their 1979 paper [27], Kazhdan and Lusztig defined two
remarkable bases {Cw : w ∈W} and {C ′w : w ∈W} for H(Γ) in terms of the natural basis.

The entries in the change of basis matrix give rise to the Kazhdan–Lusztig polynomials {Px,w : x,w ∈W}. If
x < w (x is a subexpression of w), then Px,w is a polynomial in q of degree at most (`(w)− `(x)− 1)/2. We
let µ(x,w) denote the (integer) coefficient of q(`(w)−`(x)−1)/2 in Px,w. Note that µ(x,w) can only be nonzero if
x < w and `(w)− `(x) is odd. The µ-values also appear in multiplication formulas for the Kazhdan–Lusztig
basis elements {C ′w}.

1Note that the main result of [3] is actually a stronger statement, but for the sake of space, we stated a corollary here.
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The Kazhdan–Lusztig polynomials are of great importance in algebra and geometry. They have applications
to the representation theory of semisimple algebraic groups, Verma modules, algebraic geometry and topology
of Schubert varieties, canonical bases, immanant inequalities, etc. Unfortunately, computing the polynomials
Px,w efficiently quickly becomes difficult, even in finite groups of moderate size. The only obvious way to
compute the Px,w is by means of a recurrence formula [27]:

Px,w = q1−cPsx,v + qcPx,v −
∑
sz<z

µ(z, v)q−1/2
z q1/2

w Px,z,

where we define c = 0 if x < sx and c = 1 otherwise. Note that the µ-values play a major role in the recursive
structure of the Kazhdan–Lusztig polynomials. Computing each µ-value is not known to be any easier than
computing the entire polynomial Px,w. However, one can see from the recurrence above that computation of
Px,w would be simplified if one could quickly compute the µ-values.

Let J (Γ) be the two-sided ideal of H(Γ) generated by the elements
∑

w∈〈s,t〉 Tw, where (s, t) runs over all
pairs of elements of S with 3 ≤ m(s, t) < ∞, and 〈s, t〉 is the parabolic subgroup generated by s and t. We
define the generalized Temperley-Lieb algebra, TL(Γ), to be the quotient algebra H(Γ)/J (Γ).

One motivation behind studying these generalized Temperley–Lieb algebras is that they provide a gateway to
understanding the Kazhdan–Lusztig theory of the associated Hecke algebra. Loosely speaking, TL(Γ) retains
some of the relevant structure of H(Γ), yet is small enough that the computation of the leading µ-coefficients
of the Kazhdan–Lusztig polynomials is often simpler.

In [24], Green and J. Losonczy show that TL(Γ) admits a canonical (or IC) basis, {cw : w ∈ FC(W )}. This
basis is analogous to the Kazhdan–Lusztig basis for H(Γ). In addition, under some circumstances, cw is the
image of the Kazhdan–Lusztig basis element C ′w in the quotient when w ∈ FC(W ).

Using the corresponding diagram algebra of TL(Γ) when Γ is of types A,B,D, or E, Green constructed a
trace on H(Γ) similar to the Jones trace in type A [22]. This trace satisfies the Markov condition, which arises
in the context of knot theory. The coefficient µ(x,w) appears as the coefficient of q−1/2 in the trace of C ′xC

′
w.

Remarkably, this trace is easy to compute in the known examples if x,w ∈ FC(W ), even though the problem
of computing the product C ′xC

′
w is difficult in general.

5.2 Summary of research problems

This area of mathematics has rich combinatorial and algebraic foundations, promising extensive applications
to many branches of mathematics. Below, I outline a few interesting problems for future research.

Problem 4. Using the diagrammatic representation of TL(C̃) defined in [10], construct a trace on H(C̃) and
then use this trace to non-recursively compute µ(x,w) for x,w ∈ FC(W ).

Problem 5. Construct a faithful diagrammatic representation of TL(F ) and use the diagram calculus to
construct a generalized Jones trace on H(F ). Type F is the only remaining FC-finite Weyl group whose
corresponding generalized Temperley–Lieb algebra does not have a diagrammatic representation.

Problem 6. Identify sufficient conditions under which a generalized Jones trace can be defined on TL(Γ),
and hence on H(Γ), and use this trace to compute µ-coefficients in H(Γ).
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