Counting generators in type *B* Temperley–Lieb diagrams

Sarah Otis and Leal Rivanis

Plymouth State University Department of Mathematics

sotis1@plymouth.edu lsrivanis@plymouth.edu

> HRUMC 2010 April 17, 2010

Definition

A Coxeter group consists of a group W together with a generating set S consisting of elements of order 2 with presentation

$$W = \langle S : s^2 = e, (st)^{m(s,t)} = e \rangle,$$

where $m(s, t) \ge 2$ for $s \ne t$.

Comment

Since s and t are elements of order 2, the relation $(st)^{m(s,t)} = e$ can be rewritten as

Comment

Given a Coxeter group W, we can encode the defining relations in a Coxeter graph.

Example

The Coxeter group of type B_3 is defined to be the group generated by s_1, s_2, s_3 subject to:

- $s_i^2 = e$ for i = 1, 2, 3
- $s_1 s_2 s_1 s_2 = s_2 s_1 s_2 s_1$
- $s_2 s_3 s_2 = s_3 s_2 s_3$
- $s_1 s_3 = s_3 s_1$

The corresponding Coxeter graph is:

Comment

For brevity, we will no longer use s_i , but instead we will just use i. For example, we will write 1212 = 2121 in place of $s_1s_2s_1s_2 = s_2s_1s_2s_1$.

Definition

The Coxeter group of type B_n is determined by the following graph:

Then $W(B_n)$ is subject to:

- 1212 = 2121,
- iji = jij, if |i j| = 1 and $i, j \ge 2$,

•
$$ij = ji$$
, if $|i - j| \ge 2$,
• $i^2 - e$

Definition

A "word" $s_{x_1}s_{x_2}\cdots s_{x_m}$ is called an expression for $w \in W$ if it is equal to w when considered as a group element.

If m is minimal, it is a reduced expression.

Example

Let 132121 be an expression for $w \in W(B_3)$. We see that

132121 = 131212 = 311212 = 3212,

showing that the original expression is *not* reduced. However, the last expression on the right is reduced.

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of braid relations.

Definition (Stembridge 1996)

Let $w \in W$. Then w is fully commutative (FC) iff every reduced expression "avoids long braid relations."

Examples

• Let 12142 be an expression for w in B_4 . We see that

12142 = 12124.

The element clearly contains a long braid and therefore is not FC.

• Let 121342 be a reduced expression for w in B_4 . Since

```
121342, 121324, 123142, 123124, 123412\\
```

is an exhaustive list of all possible reduced expressions and none of these contain long braids, w is FC.

We will introduce the collection of Temperley–Lieb diagrams of type B_n by way of example.

Example

The following figure depicts a Temperley-Lieb diagram of type B_6 .

Comments

- There is a one-to-one correspondence between the FC elements of type B_n and a certain collection of decorated (n + 1)-diagrams.
- There is a combinatorial description of this collection of diagrams which we will not elaborate on.

Consider the following Temperley–Lieb diagrams of type B_n .

Under this correspondence, we can create the diagrams that correspond to the FC elements by concatenating the diagrams and "pulling the strings tight."

Example

Here is an example of a product of several "generator" diagrams that corresponds to the FC element $124132 \in W(B_4)$.

One of our current results deals with the problem of counting the number of occurrences of a given generator in a diagram corresponding to an unknown FC element in a Coxeter group of type B_n .

Given a diagram d, embed d in the plane so that the lower left hand corner is at the origin and node i in the south face sits at (i, 0). Also, let ℓ_i be the vertical line $x = i + \frac{1}{2}$.

Theorem (Ernst, Otis, Rivanis)

Let d be a diagram corresponding to an unknown FC element w in a Coxeter group of type B_n . Then the number of occurrences of s_i , $\#(s_i)$, in any reduced expression for w is given by

(# intersections with ℓ_i) + (# beads on non-intersected edges to the right of ℓ_i)

2

Let's see an example.

Example of main result

Example

Consider the following diagram that corresponds to some FC element in type B_7 .

Example (continued)

It turns out that the diagram on the previous slide corresponds to the FC element 1357246135243 in a Coxeter group of type B_7 .

