Diagram calculus for the Temperley-Lieb algebra

Dana C. Ernst

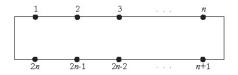
Plymouth State University Department of Mathematics http://oz.plymouth.edu/~dcernst

Northeastern Section Meeting of the MAA November 22, 2008

Diagram algebras

Definition

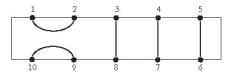
A *standard* n-box is a rectangle with 2n nodes, labeled as follows:



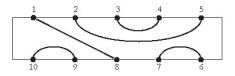
An *n*-diagram is a graph drawn on the nodes of a standard *n*-box such that

- Every node is connected to exactly one other node by a single edge.
- ► All edges must be drawn inside the *n*-box.
- The graph can be drawn so that no edges cross.

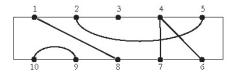
Here is an example of a 5-diagram.



Here is another.

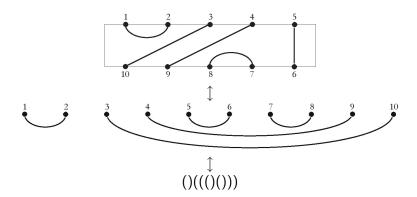


Here is an example that is not a diagram.



Comment

There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.



It is well-known that the number of sequences of n pairs of well-formed parentheses is equal to the nth Catalan number. Therefore, the number of n-diagrams is equal to the nth Catalan number.

Comment (continued)

▶ The *n*th Catalan number is given by

$$C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n+1)!n!}.$$

- ▶ The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132.
- Richard Stanley's book, "Enumerative Combinatorics, Vol II," contains 66 different combinatorial interpretations of the Catalan numbers. An addendum online includes additional interpretations for a grand total of 161 examples of things that are counted by the Catalan numbers.
- In this talk, we'll see one more example of where the Catalan numbers turn up.

Definition

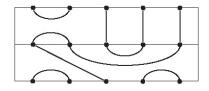
The Temperley-Lieb algebra, TL_n , with parameter δ is the free $\mathbb{Z}[\delta]$ -module having the set of *n*-diagrams as a basis with multiplication defined as follows.

If *d* and *d'* are *n*-diagrams, then dd' is obtained by identifying the "south face" of *d* with the "north face" of *d'*, and then replacing any closed loops with a factor of δ .

 TL_n is an associative algebra. That is, the multiplication of *n*-diagrams is associative.

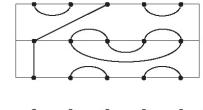
A typical element of TL_n looks like a linear combination of *n*-diagrams, where the coefficients in the linear combination are polynomials in δ .

Multiplication of two 5-diagrams.

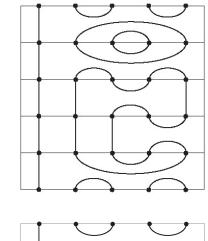




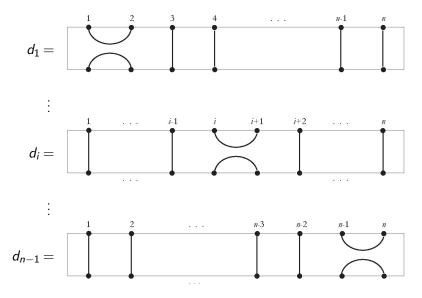
Here's another example.



And here's one more.



Now, we define a few "simple" n-diagrams. Let



Claim

The set of "simple" diagrams generate TL_n as a unital algebra. In this case, we can write any *n*-diagram as a product of the "simple" *n*-diagrams.

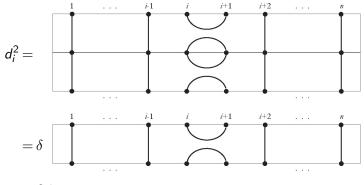
Theorem

 TL_n has a presentation (as a unital algebra):

1.
$$d_i^2 = \delta d_i$$
, for all *i*
2. $d_i d_j = d_j d_i$, for $|i - j| \ge 2$
3. $d_i d_j d_i = d_i$, for $|i - j| = 1$

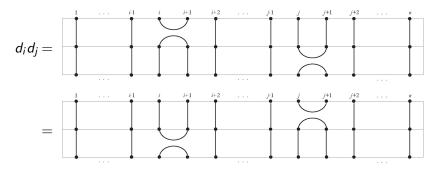
Let's check that these relations actually hold.

For all *i*, we have



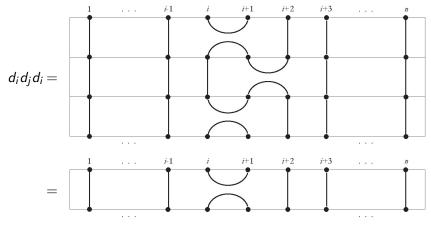
 $=\delta d_i$

For $|i - j| \ge 2$, we have



 $= d_j d_i$

For |i - j| = 1 (here, j = i + 1; j = i - 1 being similar), we have



 $= d_i$

Comments

- ▶ TL_n as an algebra with the presentation given above was invented in 1971 by Temperley and Lieb.
- First arose in the context of integrable Potts models in statistical mechanics.
- ► As well as having applications in physics, TL_n appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- Penrose/Kauffman used diagram algebra to model TL_n in 1971.
- In 1987, Vaughan Jones (awarded Fields Medal in 1990) recognized that TL_n is isomorphic to a particular quotient of the Hecke algebra of type A_{n-1} (the Coxeter group of type A_{n-1} is the symmetric group, S_n).

Now, let's consider the symmetric group, S_n . Recall that S_n is generated by the adjacent transpositions:

$$(1 2), (2 3), \dots, (n-1 n).$$

That is, every element of S_n can be written as a product of the adjacent transpositions.

Define

$$s_i=(i\ i+1),$$

so that $s_1, s_2, \ldots, s_{n-1}$ generate S_n .

Comment

Note that S_n satisfies the following relations:

1.
$$s_i^2 = 1$$
 for all *i* (transpositions are order 2)

2.
$$s_i s_j = s_j s_i$$
, for $|i - j| \ge 2$ (disjoint cycles commute)

3.
$$s_i s_j s_i = s_j s_i s_j$$
, for $|i - j| = 1$ (called the braid relations)

In fact, we can use these relations to define S_n .

Also, notice that these relations look similar to the relations of TL_n .

Comment (continued)

Every element of S_n can be written as a word in these generators and we can use the relations to potentially decrease the number of generators occurring in a word.

Example

In S₄

$$(1 \ 2 \ 3 \ 4) = (1 \ 2)(2 \ 3)(3 \ 4) = s_1 s_2 s_3.$$

This is an example of a "reduced" word in S_4 . However, the expression

 $s_1 s_3 s_1 s_2 s_3 s_1$

is not a reduced word.

$$s_1 s_3 s_1 s_2 s_3 s_1 = s_3 s_1 s_1 s_2 s_3 s_1$$

$$= s_3 s_1 s_1 s_2 s_3 s_1$$

$$= s_3 s_2 s_3 s_1$$

Example (continued)

It turns out that the last expression above is reduced. Notice that we could apply a braid relation, but this does not reduce the number of generators appearing in this expression.

 $s_3 s_2 s_3 s_1 = s_2 s_3 s_2 s_1$

We can also commute s_1 and s_3 , but this does not reduce the word either.

 $s_3 s_2 s_3 s_1 = s_3 s_2 s_1 s_3$

Definition

Let $\sigma = s_{i_1} \dots s_{i_r} \in S_n$ be reduced. We say that σ is fully commutative, or FC, if any two reduced expressions for σ may be obtained from each other by repeated commutation of adjacent generators. Equivalently (but not immediately obvious), σ has no reduced expression containing $s_i s_j s_i$ for |i - j| = 1 (that is, there are no opportunities to apply a braid relation).

Example

In the previous example, $s_1s_2s_3$ is FC. However, $s_3s_2s_3s_1$ is not FC because we have an opportunity to apply a braid relation.

Now, consider the group algebra of the symmetric group S_n over \mathbb{Z} :

$\mathbb{Z}[S_n]$

This algebra consists of linear combinations of reduced words in the generators s_1, \ldots, s_{n-1} , where the coefficients in the linear combination are integers.

Next, take the two-sided ideal, J, of $\mathbb{Z}[S_n]$ generated by all elements of the form

$$1+s_i+s_j+s_is_j+s_js_i+s_is_js_i,$$

where |i - j| = 1 (i.e., s_i and s_j are noncommuting generators).

Now, we consider the quotient algebra $\mathbb{Z}[S_n]/J$. Let

$$b_{s_i} = (1+s_i) + J \in \mathbb{Z}[S_n]/J.$$

Definition If $\sigma = s_{i_1} \dots s_{i_r}$ is reduced and FC, then

$$b_\sigma = b_{s_{i_1}} \dots b_{s_{i_r}}$$

is a well-defined element of $\mathbb{Z}[S_n]/J$. b_{σ} for σ FC is called a monomial.

Theorem

As a unital algebra, $\mathbb{Z}[S_n]/J$ is generated by $b_{s_1}, \ldots, b_{s_{n-1}}$. Furthermore, the set $\{b_{\sigma} : \sigma \ FC\}$ is a free \mathbb{Z} -basis for $\mathbb{Z}[S_n]/J$.

That is, $\mathbb{Z}[S_n]/J$ has a basis indexed by the fully commutative elements of S_n . We should think of $\mathbb{Z}[S_n]/J$ as the set of all linear combinations of monomials (indexed by FC elements of S_n), where the coefficients of the linear combination are integers.

If we let $\delta = 2$, we have the following result.

Theorem

The algebras $\mathbb{Z}[S_n]/J$ and TL_n are isomorphic as \mathbb{Z} -algebras under the correspondence

$$b_{s_i} = (1+s_i) + J \mapsto d_i.$$

In particular, each monomial corresponds to a unique diagram.

That is, the quotient algebra $\mathbb{Z}[S_n]/J$ can be faithfully represented by the diagram algebra that we introduced earlier, where we set $\delta = 2$.

Corollary

Therefore, the number of FC elements in S_n is equal to the *n*th Catalan number.