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Diagram algebras

Definition
A standard n-box is a rectangle with 2n nodes, labeled as follows:

An n-diagram is a graph drawn on the nodes of a standard n-box
such that

I Every node is connected to exactly one other node by a single
edge.

I All edges must be drawn inside the n-box.

I The graph can be drawn so that no edges cross.



Example

Here is an example of a 5-diagram.

Here is another.



Example

Here is an example that is not a diagram.



Comment
There is a one-to-one correspondence between n-diagrams and
sequences of n pairs of well-formed parentheses.

l

l
()((()()))

It is well-known that the number of sequences of n pairs of
well-formed parentheses is equal to the nth Catalan number.
Therefore, the number of n-diagrams is equal to the nth Catalan
number.



Comment (continued)

I The nth Catalan number is given by

Cn =
1

n + 1

(
2n
n

)
=

(2n)!

(n + 1)!n!
.

I The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132.

I Richard Stanley’s book, “Enumerative Combinatorics, Vol II,”
contains 66 different combinatorial interpretations of the
Catalan numbers. An addendum online includes additional
interpretations for a grand total of 161 examples of things
that are counted by the Catalan numbers.

I In this talk, we’ll see one more example of where the Catalan
numbers turn up.



Definition
The Temperley-Lieb algebra, TLn(δ), with parameter δ is the free
Z[δ]-module having the set of n-diagrams as a basis with
multiplication defined as follows.

If d and d ′ are n-diagrams, then dd ′ is obtained by identifying the
“south face” of d with the “north face” of d ′, and then replacing
any closed loops with a factor of δ.

TLn is an associative algebra. That is, the multiplication of
n-diagrams is associative.



Comment

I Z[δ] is the set of all polynomials in δ with integer coefficients.
For example,

δ3 − 4δ + 1 ∈ Z[δ].

I In this context, we should think of an algebra as being like a
vector space, except we can also multiply the “vectors,” which
in this case are diagrams. Also, everything here is happening
over Z[δ] instead of a field.

I A typical element of TLn(δ) looks like a linear combination of
n-diagrams, where the coefficients in the linear combination
are polynomials in δ.

I Let’s look at some examples of multiplication of diagrams.



Example

Multiplication of two 5-diagrams.

=



Example

Here’s another example.

= δ



Example

And here’s one more.

= δ3



Theorem
In general, the product of any number of n-diagrams will be equal
to

δk some n-diagram

where 0 ≤ k <∞. Note that k = 0 if there are no loops in the
product.

Now, we define a few “simple” n-diagrams. These diagrams will
form a generating set for TLn(δ).



Let

d1 =

...

di =

...

dn−1 =



Claim
The set of “simple” diagrams generate TLn(δ) as a unital algebra.

In this case, we can write any n-diagram as a product of the
“simple” n-diagrams.

Theorem
TLn(δ) has a presentation (as a unital algebra):

1. d2
i = δdi , for all i

2. didj = djdi , for |i − j | ≥ 2

3. didjdi = di , for |i − j | = 1

Let’s check that these relations actually hold.



For all i , we have

d2
i =

= δ

= δdi



For |i − j | ≥ 2, we have

didj =

=

= djdi



For |i − j | = 1 (here, j = i + 1; j = i − 1 being similar), we have

didjdi =

=

= di



Comments

I TLn(δ) as an algebra with the presentation given above was
invented in 1971 by Temperley and Lieb.

I First arose in the context of integrable Potts models in
statistical mechanics.

I As well as having applications in physics, TLn(δ) appears in
the framework of knot theory, braid groups, Coxeter groups
and their corresponding Hecke algebras, and subfactors of von
Neumann algebras.

I Penrose/Kauffman used diagram algebra to model TLn(δ) in
1971.

I In 1987, Vaughan Jones (awarded Fields Medal in 1990)
recognized that TLn(δ) is isomorphic to a particular quotient
of the Hecke algebra of type An−1 (the Coxeter group of type
An−1 is the symmetric group, Sn).



Example

TL3(δ) is generated by d1 and d2, where these generators satisfy
the relations

d2
1 = δd1 and d2

2 = δd2

d1d2d1 = d1 and d2d1d2 = d2

Example

TL4(δ) is generated by d1, d2, and d3 where these generators
satisfy the relations

d2
1 = δd1, d

2
2 = δd2, and d2

3 = δd3

d1d3 = d3d1

d1d2d1 = d1 and d2d1d2 = d2

d2d3d2 = d2 and d3d2d3 = d2



Theorem
A basis for TLn may be described in terms of “reduced words” in
the algebra generators di .

Example

Consider the following expression in TL4(δ).

d1d3d1d2d3.

This expression is not “reduced”.



Example (continued)

d1d3d1d2d3 = d3d1d1d2d3

= d3d1d1d2d3

= δd3d1d2d3

= δd3d1d2d3

= δd1d3d2d3

= δd1d3d2d3

= δd1d3

The expression d1d3 is “reduced” and represents a basis element of
TL3(δ). Note that it’s not the only reduced expression for this
basis element.

d1d3 = d3d1



The symmetric group Sn

Now, let’s consider the symmetric group, Sn. Recall that Sn is
generated by the adjacent transpositions:

(1 2), (2 3), . . . , (n − 1 n).

That is, every element of Sn can be written as a product of the
adjacent transpositions.

Now, define
si = (i i + 1).

Example

S4 is generated by

s1 = (1 2), s2 = (2 3), s3 = (3 4).



Comment
Note that Sn satisfies the following relations:

1. s2
i = 1 for all i (transpositions are order 2)

2. si sj = sjsi , for |i − j | ≥ 2 (disjoint cycles commute)

3. si sjsi = sjsi sj , for |i − j | = 1 (called the braid relations)

In fact, we can use these relations to define Sn. Also, notice that
these relations look similar to the relations of TLn(δ).



Comment (continued)

Every element of Sn can be written as a word in these generators
and we can use the relations to potentially decrease the number of
generators occurring in a word.

Example

In S4

(1 2 3 4) = (1 2)(2 3)(3 4) = s1s2s3.

This is an example of a “reduced” word in S4. However, the
expression

s1s3s1s2s3s1

is not a reduced word.

s1s3s1s2s3s1 = s3s1s1s2s3s1

= s3s1s1s2s3s1

= s3s2s3s1



Example (continued)

The last expression above is reduced. Notice that we could apply a
braid relation in the last expression above, but it does not reduce
the last expression above.

s3s2s3s1 = s2s3s2s1

We can also commute s1 and s3, but this does not reduce the word
either.

s3s2s3s1 = s3s2s1s3



Definition
Let σ = si1 . . . sir ∈ Sn be reduced. We say that σ is fully
commutative, or FC, if any two reduced expressions for σ may be
obtained from each other by repeated commutation of adjacent
generators. In other words, σ has no reduced expression containing
si sjsi for |i − j | = 1 (that is, there are no opportunities to apply a
braid relation).

Example

In the previous example, s1s2s3 is FC. However, s3s2s3s1 is not FC
because we have an opportunity to apply a braid relation.



A group algebra of Sn

Now, consider the group algebra of the symmetric group Sn over Z:

Z[Sn]

This algebra consists of linear combinations of reduced words in
the generators s1, . . . , sn−1, where the coefficients in the linear
combination are integers. For example,

s1s2 + 3s2s3s2 ∈ Z[S4].

Comment
The elements of Sn form a free Z-basis for Z[Sn].



Next, take the two-sided ideal, J, of Z[Sn] generated by all
elements of the form

1 + si + sj + si sj + sjsi + si sjsi ,

where |i − j | = 1 (i.e., si and sj are noncommuting generators).

Example

Consider Z[S3]. In this case, J is generated by

1 + s1 + s2 + s1s2 + s2s1 + s1s2s1.

What this means is that J is the smallest ideal containing the
linear combination above (it is closed under multiplication on the
left and right by Z-linear combinations of elements from Sn).



Now, we consider the quotient algebra Z[Sn]/J. Let

bsi = (1 + si ) + J ∈ Z[Sn]/J.

Definition
If σ = si1 . . . sir is reduced and FC, then

bσ = bsi1
. . . bsir

is a well-defined element of Z[Sn]/J. bσ for σ FC is called a
monomial.



Theorem
As a unital algebra, Z[Sn]/J is generated by bs1 , . . . , bsn−1 .
Furthermore, the set {bσ : σ FC} is a free Z-basis for Z[Sn]/J.

That is, Z[Sn]/J has a basis indexed by the fully commutative
elements of Sn. We should think of Z[Sn]/J as the set of all linear
combinations of monomials (indexed by FC elements of Sn), where
the coefficients of the linear combination are integers.



If we let δ = 2, we have the following result.

Theorem
The algebras Z[Sn]/J and TLn(2) are isomorphic as Z-algebras
under the correspondence

bsi = (1 + si ) + J 7→ di .

That is, the quotient algebra Z[Sn]/J can be represented by the
diagram algebra that we introduced earlier, where we set δ = 2.

Corollary

Therefore, the number of FC elements in Sn is equal to the nth
Catalan number.


