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ABSTRACT

THE REVERSAL POSET OF SIGNED PERMUTATIONS

FADI AWIK

The set of signed permutations S±(n) has a fascinating structure. A reversal

acting on a permutation π ∈ S±(n) reverses the order of elements in consecutive

positions and changes their signs. As a group, S±(n) is generated by the col-

lection of reversals. The reversal distance of a signed permutation π ∈ S±(n) is

equal to the minimal number of reversals needed to transform π into the identity

permutation. The reversal poset on S±(n) is a poset whose elements are signed

permutations with covering relations determined by: u l v if and only if there

exists a reversal that transforms v into u and the reversal distance of u is one less

than the reversal distance of v. The reversal poset is ranked by reversal distance.

We refer to a signed permutation that attains the maximal reversal distance in

S±(n) as a maximal permutation. These are the permutations of maximal rank

in the reversal poset on S±(n). It turns out that maximal permutations in S±(n)

have reversal distance n+1 when n 6= 1, 3. In this thesis, we derive several results

pertaining to the structure of the reversal poset and enumerate permutations of

rank 0, 1, 2, and n + 1, and obtain partial results for reversal distance n. Our

main result is an enumeration of the maximal permutations.
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Chapter 1

Introduction

A permutation of the numbers 1 through n is a list of these number with a specific order-
ing. For example, [3, 2, 4, 5, 1] is a permutation of 1 through 5. A signed permutation is
a permutation of the numbers 1 through n in which each number is signed. For example,
[4,−5,−2,−1,−3] is a signed permutation of the numbers 1 through 5. Signed permutations
arise in many areas, both in and outside of mathematics. In particular, signed permutations
are useful for modeling large-scale mutations of genomes [2, 7].

A reversal of a signed permutation is the act of swapping the order of a consecutive
subsequence of numbers and changing the sign of each number in the subsequence. For
example, if we perform a reversal involving the first, second third, and fourth, entries in
[4,−5,−2,−1,−3] we obtain [1, 2, 5,−4,−3]. Given a signed permutation π of the numbers
1 through n, it is always possible to transform π into the identity permutation [1, 2, . . . , n].
This can always be accomplished in a variety of ways and not necessarily using the same
number of reversals. In the worst case scenario, we need two reversals to put the value 1 in
the first position, two reversals to put the value 2 in the second position, etc. At each step, we
need one reversal to put the number in the proper position and potentially a second reversal
to change its sign. Therefore, we need at most 2n reversals to transform one permutation
into the identity.

The reversal distance of signed permutation π is the minimum number of reversals re-
quired to transform π into the identity permutation. For example, consider the permutation
[4,−5,−2,−1,−3]. We can transform this permutation into the identity using 3 reversals:

[4,−5,−2,−1,−3]→ [1, 2, 5,−4,−3]→ [1, 2,−5,−4,−3]→ [1, 2, 3, 4, 5].

The first reversal involved the first, second, third, and fourth entries, the second reversal
only involved the third entry, and the final reversal involved the last three entries. There
are other sequences of reversals that would also work for this example, but what is not
immediately obvious is that we could not have obtained the identity permutation in fewer
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than three reversals. Thus, [4,−5,−2,−1,−3] has reversal distance 3. Since the order in
which we apply two reversals often matters, it can be challenging to find an optimal sequence
of reversals that transforms a signed permutation into the identity.

The genome of a species can be viewed of as a collection of chromosomes, where each
chromosome is an ordered sequences of genes. Each gene has an orientation given by its loca-
tion on the DNA double strand. Genomes of different species differ from one another. These
differences are the result of point mutations, in which a single nucleotide is modified, and
genome rearrangements, where clusters of nucleotides are modified. Genome rearrangements
manifest themselves as a shuffling of the genes (possibly inserting new genes or deleting
existing genes). Despite the fact that genome rearrangements occur infrequently, over time,
continued genome rearrangements cause the order of the genes on a chromosome to become
more and more scrambled with respect to the original ordering. Two closely-related species
will typically have similar gene orders while the gene orders of two more distant species often
differ substantially. Comparing two similar sequences of genes yields two signed permuta-
tions, one for each species. Each number in the signed permutation represents either a single
gene or a conserved block of genes, where the sign of the number indicates the orientation.
Note that we are only considering linear chromosomes (eukaryotes), as opposed to circular
ones.

There are several types of genome rearrangements that act on a single chromosome: dele-
tion, insertion, duplication, transposition, and reversal (also called inversion). Each of these
rearrangements can be interpreted in terms of signed permutations. The genetic distance
between two closely-related species is the minimum number of rearrangements necessary to
transform one genome into the other. For example, the genomes for cabbage and turnip
differ by three reversals while the genomes for a human and a mouse differ by 251 rear-
rangements, 149 of which are reversals [7]. Since reversals typically make up the bulk of the
rearrangements, genetic distance can be approximated by computing the reversal distance
between the corresponding signed permutations. For more background on the connection
between genome rearrangements and the mathematics of signed permutations being acted
on by reversals, see [1, 2, 3, 4, 5, 8, 9].

Except when n is 1 or 3, it turns out that the maximal reversal distance of a signed
permutation of the numbers 1 through n is n + 1 (see Chapter 3). That is, every signed
permutation on the numbers 1 through n can be sorted in at most n + 1 reversals. This
is substantially better than the worst case scenario of 2n that we mentioned above. For
each n (not equal to 1 or 3), there are always permutations that attain the upper bound of
n+ 1, which establishes a cap on the genetic distance between two genomes that are related
by reversal mutations. We refer to a signed permutation that attains the maximal reversal
distance as a maximal permutation. It turns out that [5, 1, 3, 2, 4] is an example of a maximal
permutation having reversal distance 6.
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We define the reversal poset on S±(n) as a poset with covering relation π l γ if there
exists a reversal that transforms γ into π such that the reversal lowers the reversal distance
by one. Consider our example from earlier. We have the chain

[1, 2, 3, 4, 5] < [1, 2,−5,−4,−3] < [1, 2, 5,−4,−3] < [4,−5,−2,−1,−3]

since we can transform [4,−5,−2,−1,−3] to [1, 2, 3, 4, 5] while lowering the reversal distance
at each step. It is clear that the reversal poset is ranked by reversal distance. If a signed per-
mutation is maximal in the poset, we say the permutation is terminal to avoid confusion with
permutations that have maximal reversal distance. Notice that all maximal permutations are
terminal. Perhaps surprisingly, there are terminal permutations that are not maximal. For
example, the permutation [2, 5, 1, 3, 4] is terminal but not maximal having reversal distance
5. Very little is known about terminal yet non-maximal permutations. Genetically speaking,
the existence of terminal yet non-maximal permutations implies that certain sequences of
reversal mutations can lead to genetic distance topping out prior to attaining the maximum
possible genetic distance. In other words, certain mutations can limit the future differences
between related species.

In this thesis, our goal is to make progress on enumerating signed permutations of the
same rank. Specifically, we tackle the cases of rank 0, 1, 2, and n + 1 for n 6= 1, 3, and
obtain partial results for rank n. In order to explore the reversal poset, we also discuss the
breakpoint diagram first introduced by Hanenhalli and Pevzner [7]. Hanenhalli and Pevzner
give us a formula to calculate reversal distance using the breakpoint diagram, which forms a
foundation for understanding how to enumerate maximal permutations. Several of the results
in this thesis were inspired by the work that Tanner Rosenberg did during an undergraduate
research project. However, most of our proofs are original work. We have indicated when
this is not the case throughout the thesis.
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Chapter 2

Signed Permutations and Breakpoint
Diagrams

We begin by introducing some terminology. Define S(n) to be the group of permutations on
{1, 2, . . . , n} and S±(n) to be the group of signed permutations on {1, 2, . . . , n}. Recall that
|S(n)| = n! and |S±(n)| = 2nn!. We will represent a signed permutation π ∈ S±(n) using
one-line notation:

π = [π1, π2, . . . , πn],

where πi := π(i). For π ∈ S±(n) and i ≤ j, we define the reversal δi,j acting on π via

δi,j(π) = [π1, . . . ,−πj,−πj−1, . . . ,−πi+1,−πi, πj+1, . . . , πn].

That is, δi,j takes the elements in positions i, i + 1, . . . , j − 1, j, reverses their order and
changes all the signs. We can consider each reversal δi,j as a signed permutation itself. In
particular, we have

δi,j = [1, . . . , i− 1,−j,−(j − 1), . . . ,−(i+ 1),−i, j + 1, . . . , n].

Note that δi,i is the reversal that changes the sign in the ith position. It is well known that
S±(n) is generated by the set of reversals R := {δi,j | 1 ≤ i ≤ j ≤ n} (for a fun reference,
see [14]), and so every group element can be written as a word in terms of reversals. Every
reversal δi,j has order 2. When viewing a signed permutation as a product of reversals, we
will compose the reversals from right to left. Note that |R| =

(
n+1
2

)
= Tn, where Tn is the

nth triangular number.
As expected, the order in which we apply two reversals often matters. Two reversals

commute if and only if the sets of positions being acted on are disjoint from each other or
the two reversals share a common center [14]. Since the set of reversals generate S±(n),
we can always perform a sequence of reversals on a permutation to obtain the identity
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permutation In := [1, 2, ..., n − 1, n]. Given a signed permutation π, the reversal distance,
denoted d(π), is defined as the minimum number of reversals needed to transform π to In.
This is also the minimum number of reversals in a product that yields π.

Example 2.1. Consider the permutation π = [−5, 1, 2,−4,−3, 6, 7] ∈ S±(7). Figure 2.1
depicts a sequence of three reversals that transforms π to the identity permutation. Thus,
d(π) ≤ 3. It turns out that we cannot use fewer reversals, and so d(π) = 3. Reversing the
sequence of reversals indicated in the figure determines a product that yields π. That is,
π = δ4,5δ2,5δ1,5.

π =[−5, 1, 2, − 4,−3, 6, 7]

[−5, 1, 2, 3, 4, 6, 7]

[− 5,−4,−3,−2,−1, 6, 7]

[ 1, 2, 3, 4, 5, 6, 7]I7 =

δ4,5

δ2,5

δ1,5

Figure 2.1: Sequence of reversals.

Next, we introduce the notion of a breakpoint diagram in order to visualize the structure
of a signed permutation. This diagram proves to be useful when computing reversal distance.
We mimic the development described in [7] by Hannenhalli and Pevzner, although we have
adapted some notation and terminology for our purposes.

Define S0(2n) to be the set of unsigned permutations on {0, 1, 2, . . . , 2n+ 1} such that 0
and 2n + 1 are fixed points. We define the expansion transformation from a signed permu-
tation π ∈ S±(n) to an unsigned permutation π′ ∈ S0(2n) as follows:

π′0 = 0, π′2n+1 = 2n+ 1,

and for all other values, if πi > 0, then

π′2i−1 = 2πi − 1, π′2i = 2πi,

while if πi < 0, then
π′2i−1 = 2|πi|, π′2i = 2|πi| − 1.
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Note that the expansion transformation is injective, which implies that the process is uniquely
reversible for an unsigned permutation in the image. The breakpoint diagram of π, denoted
B(π), is a graph with colored edges constructed as follows.

1. vertex set: {π′0, π′1, . . . , π′2n+1};

2. black edge set: {{π′2i, π′2i+1} | 0 ≤ i ≤ n};

3. gray edge set: {{2i, 2i+ 1} | 0 ≤ i ≤ n}.

By convention, we lay out the vertices π′0, . . . , π
′
2n+1 from left to right, draw the black edges

horizontally, and draw the gray edges as arcs above the black edges. Using this convention,
every other consecutive pair of vertices is connected by a black edge.

Example 2.2. Figure 2.2 depicts the breakpoint diagram for π = [−5, 1, 3, 2, 4, 6,−7]. To
make B(π), we first obtain

π′ = [0, 10, 9, 1, 2, 5, 6, 3, 4, 7, 8, 11, 12, 14, 13, 15],

and then organize the vertices determined by π′ from left to right and connect with black
and gray edges accordingly.

0 10 9 1 2 5 6 3 4 7 8 11 12 14 13 15
−5 1 3 2 4 6 −7

Figure 2.2: Breakpoint diagram for [−5, 1, 3, 2, 4, 6,−7].

Let π ∈ S±(n) and let π′ ∈ S0(2n) be its corresponding expansion transformation. If
{π′i, π′l} is a gray edge such that |i− l| ≥ 1, we define the support of {π′i, π′l} to be the interval
of elements of π′ between, and including, its endpoints. We say that the edge {π′i, π′l} is
oriented if its support contains an odd number of elements, and it is unoriented otherwise.

Example 2.3. Refer to π in Example 2.2. The gray edge {12, 13} has support {12, 14, 13},
which has odd cardinality. Thus, {12, 13} is oriented. The gray edge {2, 3} has support
{2, 5, 6, 3}, which has even cardinality, and hence {2, 3} is an unoriented edge.
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Visually, an oriented edge occurs if it connects two left vertices of a black edge or two
right vertices of a black edge. An edge is unoriented if it connects a left vertex of a black edge
and a right vertex of a black edge. Figures 2.3(a) and 2.3(b) depict unoriented edges in blue,
and Figures 2.3(c) and 2.3(d) depict oriented edges in green. A cycle in B(π) containing
at least two gray edges and two black edges is oriented if at least one edge in the cycle is
oriented, and unoriented otherwise. A trivial cycle is a cycle that only contains one black
edge and one gray edge. By definition, a trivial cycle is neither oriented nor unoriented. A
component of the breakpoint diagram is a collection of cycles such that each cycle of the
component has at least one gray edge that intersects with a gray edge of another cycle in the
component (drawn using our convention). A trivial component is a component that contains
a single trivial cycle. We note that a non-trivial component contains at least two black edges.
When a non-trivial component has at least one oriented cycle, it is an oriented component.
Otherwise, a non-trivial component is unoriented. A trivial component is neither oriented
nor unoriented.

π′i π′l
· · ·

(a)

· · ·
π′i π′l

(b)

· · ·
π′i π′l

(c)

· · ·
π′i π′l

(d)

Figure 2.3: Visual representations of unoriented edges (blue) and oriented edges (green).

Example 2.4. Let λ = [−5, 1, 3, 2, 4, 6,−7, 8, 11, 10, 9] ∈ S±(11). The breakpoint diagram
for λ is given in Figure 2.4, where unoriented edges are colored in blue and oriented edges
colored in green. There are two oriented cycles and three unoriented cycles. The two
components with no green edges are unoriented, whereas the two components containing
green edges are oriented. Looking from left to right, the first three components each contain
a single cycle, whereas the last component contains two unoriented cycles that intersect. In
summary, there are two oriented components and two unoriented components.

It is important to note that not every seemingly potential breakpoint diagram corresponds
to the breakpoint diagram for a signed permutation.

7
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0 10 9 1 2 5 6 3 4 7 8 11 12 14 13 15 16 21 22 19 20 17 18 23
−5 1 3 2 4 6 −7 8 11 10 9

Figure 2.4: Breakpoint diagram of λ = [−5, 1, 3, 2, 4, 6,−7, 8, 11, 10, 9] with unoriented edges
colored in blue and oriented edges colored in green.

Example 2.5. Consider the diagram in Figure 2.5. This diagram does not represent the
breakpoint diagram for a signed permutation since the last vertex in the diagram should
be labeled 16 by convention, but the configuration of the gray edges dictates that the last
vertex would be labeled by 3.

0 1 2 3 6= 16

Figure 2.5: Diagram that does not represent a breakpoint diagram.

Let π ∈ S±(n). We say that a component U1 of B(π) covers component U2 if all black
edges of U2 appear between two black edges of U1 in the breakpoint diagram. Covers is a
transitive relation.

Example 2.6. In Figure 2.6, the component U1 covers U2. In Figure 2.7, the component U2

covers both U1 and U3.

Let π ∈ S±(n). An unoriented component U2 separates two other unoriented components
U1 and U3 when there are black edges of U2 occurring between U1, and U3 and U2 covers
U1 or U3 (possibly both). Note that an unoriented component does not separate two other
unoriented components if, ignoring black edges for oriented components, all of its black edges
appear consecutively in the breakpoint diagram or if all of its black edges occur only on the
far left and far right of the breakpoint diagram.

8
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0 9 10 1 2 5 6 3 4 7 8 11

5 1 3 2 4

U1

U2

Figure 2.6: Breakpoint diagram where component U1 covers component U2.

Example 2.7. Consider the breakpoint diagram in Figure 2.7 with unoriented components
U1, U2, and U3. Component U2 separates components U1 and U3, since the black edges of
U2 occur between U1 and U3 and U2 covers both U1 and U3. In the breakpoint diagram in
Figure 2.9, the unoriented components U2, U4, and U6 do not separate two other unoriented
components, since all of their black edges appear consecutively in the breakpoint diagram.
However, the component U1 separates U2 and U3, for example.

0 9 10 13 14 11 12 15 16 1 2 5 6 3 4 7 8 17
5 7 6 8 1 3 2 4

U1

U2

U3

Figure 2.7: Breakpoint diagram that has a component that separates.

An unoriented component U of B(π) is a hurdle if it does not separate two other un-
oriented components and it either covers all other unoriented components or does not cover
any unoriented components. If U is a hurdle that covers all unoriented components, we call
U a maximal hurdle. If U is a hurdle that does not cover any unoriented components, U is a
minimal hurdle. Note that there is at most one maximal hurdle, but there could be several
minimal hurdles.

Example 2.8. In Figure 2.8, we have two unoriented components (U1 and U2) and one
oriented component (U3). We see that U1 covers all of the other unoriented components

9
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0 15 16 1 2 11 12 5 6 8 7 9 10 3 4 13 14 17

8 1 6 3 −4 5 2 7

U1

U2

U3

Figure 2.8: Breakpoint diagram with two hurdles.

and U2 covers no other unoriented component, and neither component separates two other
unoriented components. Thus, U1 and U2 are both hurdles. Specifically, U1 is a maximal
hurdle and U2 is a minimal hurdle. In Figure 2.9, the components U2, U4, and U6 are each
minimal hurdles and there is no maximal hurdle.

For π ∈ S±(n), we define c(π) and h(π) to be the number of cycles and hurdles in B(π),
respectively.

Example 2.9. Let π = [−5, 1, 3, 2, 4, 6,−7]. From its breakpoint diagram depicted in Fig-
ure 2.2, we can infer that c(π) = 3 and h(π) = 1. Consider λ = [−5, 1, 3, 2, 4, 6,−7, 8, 11, 10, 9],
whose breakpoint diagram is given in Figure 2.4. Then c(λ) = 5 and h(λ) = 2.

We say that a hurdle U of B(π) is a superhurdle if there exists an unoriented non-hurdle
T such that the removal of U from B(π) results in T becoming a hurdle.

Example 2.10. Consider π = [5, 1, 3, 2, 4, 6, 8, 10, 9, 11, 7, 12, 17, 13, 15, 14, 16] ∈ S±(16),
whose breakpoint diagram is displayed in Figure 2.9. Observe that B(π) contains three
superhurdles (components U2, U4, and U6) and three unoriented non-hurdles (components
U1, U3, and U5). For instance, component U2 is a superhurdle because removing U2 results
in U1 becoming a hurdle, since it would not cover any other unoriented component if U2 was
removed.

We say π ∈ S±(n) is a fortress if it contains an odd number of superhurdles and each
hurdle in the breakpoint diagram is a superhurdle.

Example 2.11. Since the permutation given in Example 2.10 (see Figure 2.9) has three
hurdles, all of which are superhurdles, π is a fortress.

10
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U1

U2

U3

U4

U5

U6

0 9 10 1 2 5 6 3 4 7 8 11 12 15 16 19 20 17 18 21 22 13 14 23 24 33 34 25 26 29 30 27 28 31 32 35

5 1 3 2 4 6 8 10 9 11 7 12 17 13 15 14 16

Figure 2.9: Breakpoint diagram for a fortress.

Notice that hurdles and superhurdles are properties of components in a breakpoint dia-
gram, while being a fortress is a property of a permutation.

We can use the following result of Hannenhalli and Pevzner [7] to compute the reversal
distance of a signed permutation using its breakpoint diagram.

Theorem 2.12. The reversal distance of any signed permutation π ∈ S±(n) is given by

d(π) = n+ 1− c(π) + h(π) + f(π)

where f(π) is 1 if π is a fortress and 0 otherwise.

Bergeron, Mixtacki, and Stoye [2] present a different approach to reversal distance that
does not involve hurdles and fortresses. However, the original description introduced by
Hannenhalli and Pevzner [7] is useful for our purposes.

Example 2.13. Let π be the permutation from Examples 2.9 and 2.10. We see that n =
17, c(π) = 6, h(π) = 3, and f(π) = 1, which means

d(π) = 17 + 1− 6 + 3 + 1 = 16.

Let λ be the permutation from Example 2.8. We conclude that n = 8, c(λ) = 3, h(λ) = 2,
and f(λ) = 0, meaning

d(λ) = 8 + 1− 3 + 2 + 0 = 8.

It is also useful to see how the structure of breakpoint diagrams changes as we sort a
permutation to the identity.

Example 2.14. Let π = [−5, 1, 2,−4,−3, 6, 7] be the permutation from Example 2.1. Fig-
ure 2.10 visualizes what happens as we transform π to the identity using an optimal sequence
of reversals, which happens to be the same sequence of reversals given in Example 2.1. Since
the sequence of reversals is optimal, we must lower the reversal distance by 1 at each step.
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0 10 9 1 2 3 4 8 7 6 5 11 12 13 14 15

−5 1 2 −4 −3 6 7

0 10 9 1 2 3 4 5 6 7 8 11 12 13 14 15

−5 1 2 3 4 6 7

0 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15

−5 −4 −3 −2 −1 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7

δ4,5

δ2,5

δ1,5

Figure 2.10: Sequence of reversals in terms of the corresponding breakpoint diagrams.
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Chapter 3

Maximal Permutations

In this chapter, we discuss the breakpoint diagram in further detail and then use it to
prove several results concerning fortresses and permutations that attain the maximal reversal
distance in S±(n). To start, we introduce the circular breakpoint diagram of a permutation,
which uses the same convention as the breakpoint diagram defined previously, but wrapped
in a circle. We place 0 and 2n+ 1 on the top of the circle (with 2n+ 1 appearing to the left
of 0), and all gray edges are drawn inside the circle.

Example 3.1. Consider the signed permutation π = [8, 1, 6, 3,−4, 5, 2, 7]. The breakpoint
diagram for this permutation is displayed in Figure 2.8, while Figure 3.1 displays the circular
breakpoint diagram of π.

0

15

16

1

2

11

12

5

68

7

9

10

3

4

13

14

17

8

1

6

3−4

5

2

7

U2

U3

U1

Figure 3.1: Circular breakpoint diagram for the permutation [8, 1, 6, 3,−4, 5, 2, 7].

Notice that the notion of a component covering all other components is no longer sensible.
In the circular breakpoint diagram for a permutation, an unoriented component U is a hurdle
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if all black edges of U appear consecutively along the circle while ignoring any oriented
components that may appear between black edges of U . In Example 3.1, components U1

and U2 are hurdles, since all black edges appear consecutively along the circle while ignoring
the oriented component U3.

A cyclic shift of the circular breakpoint diagram for a permutation is done by moving all
black edges counterclockwise while preserving the connections of the gray and black edges
between vertices and then relabeling the vertices in the following way:

1. Label the vertices at the top of the circle 0 and 2n+ 1 with 0 on the right and 2n+ 1
on the left. The vertex connected to 0 by a gray edge is labeled 1. If 1 is the most
clockwise vertex of a black edge, the next vertex clockwise is labeled 2. Otherwise the
next vertex counterclockwise is labeled 2.

2. The vertex connected to 2 by a gray edge is labeled 3. If 3 is the most clockwise vertex
of a black edge, the next vertex clockwise is labeled 4. Otherwise the next vertex
counterclockwise is labeled 4.

3. Continue this process until all vertices are labeled.

Since we started with the breakpoint diagram for a permutation, it is clear that this label-
ing is possible. In this context, a cyclic shift cyclically permutes the breakpoint diagram
counterclockwise. The cyclic shift of a breakpoint diagram for π ∈ S±(n) is denoted by
shift(B(π)).

Example 3.2. Consider the permutation π = [8, 1, 6, 3,−4, 5, 2, 7] ∈ S±(8) whose break-
point diagram is given on the left in Figure 3.2. If we perform a cyclic shift, we obtain the di-
agram on the right in Figure 3.2, which corresponds to the permutation [2, 7, 4,−5, 6, 3, 8, 1].
Observe that both permutations have reversal distance 7. Note that the resulting permuta-
tion is not simply a cyclic shift of π.

Since we are always able to label the vertices of shift(B(π)) for π ∈ S±(n) as described
above, we can reverse the expansion transformation to obtain a permutation whose break-
point diagram is shift(B(π)). In light of this, we define shift(π) to be the resulting permuta-
tion represented by shift(B(π)). Moreover, the cyclic shift of B(π) preserves orientation and
maintains the number of hurdles, superhurdles, components, and cycles. This implies that
c(π) = c(shift(π)), h(π) = h(shift(π)), and π is a fortress if and only if shift(π) is a fortress.
This implies that d(π) = d(shift(π)). We summarize these results in the following theorem.

Theorem 3.3. If π ∈ S±(n), then shift(B(π)) is the breakpoint diagram for a signed
permutation in S±(n), denoted shift(π). Moreover, d(π) = d(shift(π)).
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Figure 3.2: Cyclic shift of a circular breakpoint diagram.

We now discuss how to perform a cyclic shift of our typical breakpoint diagrams. Let
π ∈ S±(n) and consider B(π). Let b1, . . . , bn+1 denote the black edges of B(π) when looking
at the breakpoint diagram from left to right. In this context, the cyclic shift of B(π) is the
diagram obtained by shifting bi to bi−1 (mod n+ 1) while preserving the connections of the
gray and black edges between vertices and then relabeling the vertices accordingly.

Example 3.4. Consider π = [2, 1, 3, 5, 4, 6, 8, 7] ∈ S±(8), whose breakpoint diagram is given
in Figure 3.3. When applying a cyclic shift to B(π), the result is shift(B(π)), where each
black edge in B(π) is cyclically permuted to the left. The connections of black and gray edges
in B(π) have been preserved in shift(B(π)). It turns out that shift(π) = [8, 1, 3, 2, 4, 6, 5, 7].

0 3 4 1 2 5 6 9 10 7 8 11 12 15 16 13 14 17

2 1 3 5 4 6 8 7

B(π)

b1 b2 b3 b4 b5 b6 b7 b8 b9
shift7−→

0 15 16 1 2 5 6 3 4 7 8 11 12 9 10 13 14 17

8 1 3 2 4 6 5 7

b2 b3 b4 b5 b6 b7 b8 b9 b1

shift(B(π))

Figure 3.3: Cyclic shift of a breakpoint diagram.

For π, γ ∈ S±(n), define π ∼ γ if we can obtain B(γ) from B(π) by a sequence of cyclic
shifts. It is readily seen that ∼ is an equivalence relation. If π ∼ γ, we say that π and γ are

15



shift equivalent. Define the shift equivalence class of π ∈ S±(n) via

[π] = {γ ∈ S±(n) | γ ∼ π}.

Example 3.5. Consider the permutation π = [2, 1, 3, 5, 4, 6, 9, 7, 10, 8] ∈ S±(10). There are
11 black edges in B(π), which implies the shift equivalence class of π contains at most ten
additional permutations. It turns out that there are exactly 10 additional permutations. The
breakpoint diagrams for these cyclic shifts are displayed in Figure 3.4, and each permutation
corresponding to these breakpoint diagrams are in the shift equivalence class of π.

Here are some interesting results about fortresses and reversal distance that become
relevant later. A few of these results are likely known, but we could not find references in
the literature. The next two lemmas follow immediately from the definitions.

Lemma 3.6. If S is a superhurdle of B(π) for π ∈ S±(n), then there exists a unique
unoriented component P such that P is not a hurdle, and either

1. S covers P if S is a maximal superhurdle, or

2. P covers S if S is a minimal superhurdle,

and there does not exist an unoriented component between P and S.

In Lemma 3.6, P is the component that becomes a hurdle when S is removed.

Lemma 3.7. If U is an unoriented component of B(π) for π ∈ S±(n) that covers at least
one other unoriented component, then there exists an unoriented component P covered by
U , where P covers no other unoriented component. In this case, P is a minimal hurdle.

Loosely speaking, Lemma 3.7 tells us that for every unoriented component that covers
at least one other unoriented component, there exists at least one minimal hurdle at the
“bottom of the pile.” The rest of this chapter up to Theorem 3.16 is inspired by results
or conjectures obtained by Tanner Rosenberg during an undergraduate research project.
However, we have resequenced the results and retooled most of the proofs.

Theorem 3.8. If π ∈ S±(n) is a fortress, then π has at least three superhurdles.

Proof. Let π ∈ S±(n) be a fortress such that B(π) has k superhurdles. By definition, k is
odd and every hurdle is a superhurdle. For sake of a contradiction, assume k = 1. Suppose
the unique superhurdle (and hence unique hurdle) of B(π) is S. Note that S is the only
hurdle in B(π). We consider two cases.

First, assume S is a minimal superhurdle of B(π). By Lemma 3.6, there exists a unique
unoriented non-hurdle M1 such that M1 covers S and there does not exist an unoriented

16



2 1 3 5 4 6 9 7 10 8

10 1 3 2 4 7 5 8 6 9 2 4 3 5 8 6 9 7 10 1

2 1 3 6 4 7 5 8 10 9 10 1 4 2 5 3 6 8 7 9

2 5 3 6 4 7 9 8 10 1 3 1 4 2 5 7 6 8 10 9

9 1 10 2 4 3 5 7 6 8 3 1 4 6 5 7 9 8 10 2

9 1 3 2 4 6 5 7 10 8 3 5 4 6 8 7 9 1 10 2

Figure 3.4: The breakpoint diagrams for the shift equivalence class of the permutation
[2, 1, 3, 4, 6, 9, 7, 10, 8].
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component between M1 and S. Since M1 is not a hurdle, there exists an unoriented compo-
nent M2 6= M1 that either appears entirely on the right or left of M1, or covers M1. Assume
M2 appears to the right of M1. The case involving left is similar. Since π is a fortress
with S being the unique superhurdle, M2 cannot be a hurdle. Thus, it must cover another
unoriented component. By Lemma 3.7, there exists a minimal hurdle P that is covered by
M2, a contradiction. Now, assume M2 covers M1. Since M2 cannot be a hurdle, and we
have expelled the possibility of an unoriented component appearing to the right or left of
M1, there exists an unoriented component Q that covers all other unoriented components.
This implies Q is a hurdle, again a contradiction.

For the second case, assume S is a maximal superhurdle of B(π). By Lemma 3.7, there
exists a minimal hurdle P that is covered by S. This implies P is a hurdle, which once again
is a contradiction.

Therefore, k 6= 1, so k ≥ 3 and odd. �

Theorem 3.9. If π ∈ S±(n) is a fortress, then the number of superhurdles is less than or
equal to the number of unoriented non-hurdles of B(π).

Proof. Let π ∈ S±(n) be a fortress, where B(π) has k ≥ 3 superhurdles, say S1, . . . , Sk. By
Lemma 3.6, for each superhurdle Si of B(π), there exists a unique unoriented component
Pi covered by Si such that there is no other unoriented component between Si and Pi. We
know each Pi is not a hurdle. Therefore, there are at least k unoriented non-hurdles of B(π),
completing the proof. �

Some consequences of the previous result are given below.

Corollary 3.10. If π ∈ S±(n) is a fortress, then c(π) ≥ 2h(π).

Proof. Consider a fortress π ∈ S±(n) with k ≥ 3 superhurdles, say S1, . . . , Sk. By Theo-
rem 3.9, there are at least k unoriented non-hurdle components. Thus there are at least
2k cycles, one for each superhurdle and one for each unoriented component. Therefore,
c(π) ≥ 2h(π). �

Corollary 3.11. If π ∈ S±(n) is a fortress, then d(π) ≤ n− 1.

Proof. From Theorem 2.12, the reversal distance for π ∈ S±(n) is

d(π) = n+ 1− c(π) + h(π) + f(π).
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Thus for a fortress π ∈ S±(n), we see that

d(π) = n+ 1− c(π) + h(π) + 1

= n+ 2− c(π) + h(π)

≤ n+ 2− 2h(π) + h(π) (by Corollary 3.10)

= n+ 2− h(π)

≤ n− 1 (since h(π) ≥ 3 by Theorem 3.8)

as desired. �

By examining the definition of fortress together with the structure of the breakpoint
diagram, it follows from Theorem 3.8 that the breakpoint diagram for a fortress requires at
least 18 black edges. Hence there are no fortresses in S±(n) for n ≤ 16, so we know n− 1 is
not a sharp bound on reversal distance for small n. We are not sure if this bound on reversal
distance for fortresses is a sharp bound for all n ≥ 17, but evidence suggests it might be.

Theorem 3.12. Suppose π ∈ S±(n). Then π includes at least one negative number if and
only if B(π) contains an oriented cycle.

Proof. Assume π ∈ S±(n) includes at least one negative number. Choose the smallest |πi|
such that πi < 0. Suppose πi = −k for k ∈ [n]. We consider two cases.

Assume k = 1. A gray edge connected to 0 must connect to π′2i = 1 in B(π), which is the
left endpoint of a black edge since |πi| < 0. Therefore, the gray edge is oriented, implying
B(π) has an oriented cycle.

For the second case, assume k > 1. Since |πi| is the smallest value for which π is negative,
there exists πj such that πj = k − 1. So, π′2i = 2k − 1 and π′2j = 2k − 2 are left endpoints of
black edges in B(π). Thus, the gray edge connecting 2k− 1 and 2k− 2 is oriented, implying
B(π) contains an oriented cycle.

Figure 3.5 displays both cases, where we have assumed j > i in Figure 3.5(b). In either
case, B(π) contains an oriented cycle.

It is well known (for example, see [6]) that the breakpoint diagrams for unsigned permu-
tations consist only of unoriented edges, which handles the reverse implication. �

We call a signed permutation π ∈ S±(n) maximal if it has maximal reversal distance.
Before we can prove a result about the reversal distance for maximal permutations, it will
be important to show that a maximal permutation is never a fortress.

Theorem 3.13. If π ∈ S±(n) is a maximal permutation, then π is not a fortress.
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0 2 1 2n + 1

−1
· · · · · ·

(a)

0 2k 2k − 1 2k − 3 2k − 2 2n + 1

−k k − 1

· · · · · · · · ·

(b)

Figure 3.5: Breakpoint diagrams to display the two cases of the proof of Theorem 3.12.

Proof. For each n, we exhibit a permutation with reversal distance greater than n− 1. We
will handle the cases involving n = 1 and n = 3 separately.

If n = 1, then [−1] is a permutation with reversal distance 1 = n > n− 1. If n = 3, then
[2,−3, 1] is a permutation with reversal distance 3 = n > n− 1. In either case, there exists
a permutation with reversal distance n when n = 1, 3.

Now, assume n 6= 1, 3. If n is even, let m = n
2
, and consider the permutation

[n, 1,m+ 1, 2,m+ 2, 3,m+ 3, · · · ,m− 1, 2m− 1,m].

If n is odd, let m = n−1
2

, and consider the permutation

[n, 1,m+ 1, 2,m+ 2, 3, · · · ,m, 2m].

Both permutations consist of a single unoriented cycle (according to the OEIS entry A131209 [10],
see Figure 3.6 for an example with n = 6), and so its reversal distance is greater than or
equal to n by Theorem 2.12. But then by Corollary 3.11, neither is a fortress, and hence
each has reversal distance equal to n+ 1. �

It follows from the proof of Theorem 3.13 that every maximal permutation in S±(n) must
have distance at least n when n = 1, 3 and at least n+ 1 when n 6= 1, 3.

0 11 12 1 2 7 8 3 4 9 10 5 6 13

6 1 4 2 5 3

Figure 3.6: Breakpoint Diagram for the permutation [6, 1, 4, 2, 5, 3].
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Lemma 3.14. If π ∈ S±(n) is maximal with n 6= 1, 3, then c(π) = h(π).

Proof. Assume π ∈ S±(n) with n 6= 1, 3 is maximal. We know that π is not a fortress by
Theorem 3.13, so d(π) = n + 1 − c(π) + h(π). Since each hurdle is a component, and com-
ponents can be comprised of multiple cycles, h(π) ≤ c(π). Therefore, we need c(π) = h(π)
in order to maximize d(π). Indeed, we exhibited permutations in the proof of Theorem 3.13
that achieve this. �

One consequence of Lemma 3.14 is that if π ∈ S±(n) is maximal with n 6= 1, 3, then each
component in B(π) is a hurdle and consists of a single cycle.

Theorem 3.15. If π ∈ S±(n) is a maximal permutation with n 6= 1, 3, then it cannot
include a negative number.

Proof. Assume π is a maximal permutation in S±(n) for n 6= 1, 3. By Lemma 3.14, c(π) =
h(π). Therefore, all unoriented cycles are hurdles, and so B(π) has no oriented cycles. Thus,
by Theorem 3.12, π does not contain a negative entry. �

We note that the converse of Theorem 3.15 is false. For example, consider π from
Examples 2.10 and 2.11. Note that π does not include a negative number. However, π is a
fortress and hence not maximal by Theorem 3.13. The next theorem is likely well known,
but we were unable to find a reference other than a mention in the OEIS entry A131209 [10].

Theorem 3.16. If π ∈ S±(n) is maximal, then

d(π) =

{
n, n = 1, 3

n+ 1, otherwise.

Proof. A brute-force check verifies the result for n = 1 and n = 3. Assume n 6= 1, 3 and
π ∈ S±(n) is maximal. We know by Theorem 3.13 that π is not a fortress. Therefore, by
Theorem 2.12, we have

d(π) = n+ 1− c(π) + h(π).

By Lemma 3.14, c(π) = h(π). Therefore, d(π) = n+ 1. Thus,

d(π) =

{
n, n 6= 1, 3

n+ 1, otherwise

as desired. �

Indeed, the permutations we exhibited in the proof of Theorem 3.13 are maximal if n 6=
1, 3. However, it is important to point out that there exist maximal permutations consisting
of more than one cycle. The next result follows from Theorem 3.3 and Theorem 3.16.
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Corollary 3.17. If π ∈ S±(n) is maximal, then every γ ∈ [π] is maximal.

In other words, given a maximal permutation, all permutations arising from cyclic shifts
of the breakpoint diagram are also maximal.

Example 3.18. Consider π from Example 3.5. Using Theorem 2.12 and B(π) in Figure 3.4,
we find d(π) = 11. So, π is indeed maximal. Each permutation corresponding to the various
cyclic shifts of B(π) are also maximal by Corollary 3.17.

The next result characterizes the breakpoint diagrams for cyclic shifts of a maximal
permutation and follows from the definition of cyclic shift and Corollary 3.17.

Corollary 3.19. For n 6= 1, 3, if π ∈ S±(n) is a maximal permutation, then either every
cycle of B(π) is a minimal hurdle or there exists a unique cycle that is a maximal hurdle and
all other cycles are minimal hurdles. Moreover, if B(π) has a maximal hurdle, then there
exists γ ∈ [π] where B(γ) does not have a maximal hurdle.

Corollary 3.20. If π ∈ S±(n) is a maximal permutation with n 6= 1, 3, then for all i ≤ j,
d(δi,j(π)) = n.

Proof. Let π be a maximal permutation. Since π is maximal, all elements of π must be
positive by Theorem 3.15. Thus, when we apply a reversal, our resulting permutation has
a negative element and hence cannot be maximal. Thus, d(δi,j(π)) = n for all i ≤ j by
Theorem 3.16. �

From the proof of Corollary 3.20, one might be tempted to conclude that for n 6= 1, 3,
if d(π) = n, then π contains at least one negative entry. However, this is not true (see
Example 4.3).

The next result summarizes our results involving maximal permutations.

Remark 3.21. Let π ∈ S±(n) be a maximal permutation. Then

1. π is not a fortress;

2. π only contains positive entries;

3. d(π) = n+ 1, if n 6= 1, 3 (and n otherwise);

4. All components of B(π) are unoriented cycles (and hence hurdles); and

5. Every sequence of cyclic shifts of B(π) represents a breakpoint diagram for a maximal
permutation.
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Chapter 4

The Reversal Poset

In this chapter, we discuss the reversal poset. Define the reversal poset as Rn := (S±(n),≤),
determined by the following covering relations: πlγ if there exists i < j such that δij(γ) = π
and d(π) + 1 = d(γ). In general, π ≤ γ if and only if there exists a sequence of reversals
that transforms γ into π such that reversal distance goes down at each step. Note that Rn

is analagous to the absolute order of S(n) (see [13, Chapter 3]).

Example 4.1. Figure 4.1 depicts the reversal poset R2. We have labeled each edge in the
Hasse diagram with the corresponding reversal.

[1, 2]

[−1, 2] [−2,−1] [1,−2]

[−2, 1] [−1,−2] [2,−1]

[2, 1]

δ2,2δ1,1

δ1,2

δ1,1 δ2,2

δ1,2

δ1,1

δ1,2

δ1,2

δ2,2

δ2,2

δ1,1

Figure 4.1: The Hasse diagram for the reversal poset R2.
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Given a product δx1δx2 · · · δxn in terms of a minimal number of reversals that yields
π ∈ S±(n),

In < δxn < δxn−1δxn < · · · < δx1 · · · δxn
is a chain in Rn such that the reversal distance increases by 1 at each step. Therefore, In ≤ π
for all π ∈ S±(n). In other words, In is the unique minimal element in Rn.

It follows immediately from the definition that Rn is a ranked poset, where rank corre-
sponds precisely to reversal distance. While R1 and R2 are each lattices, for n ≥ 3, Rn is
not a lattice since there is not a unique maximal element.

By definition, each vertex in the Hasse diagram for Rn can have degree at most Tn
since there are Tn distinct reversals we can apply to a permutation. From the way the
covering relations are defined, one may wonder if a reversal acting on a permutation yields a
permutation with reversal distance that is either one more or one less. However, there exists
incomparable permutations π and γ such that δi,j(π) = γ while d(π) = d(γ). In this case, we
say that π and γ are laterally related. The presence of laterally-related permutations implies
that a vertex of the Hasse diagram for Rn can have degree less than Tn. This is dissimilar
from what happens in the absolute order on S(n).

Example 4.2. Let π = [2,−3, 1,−4] ∈ S±(4). The breakpoint diagram for π is depicted in
Figure 4.2(a). From the breakpoint diagram, we find c(π) = 1 and h(π) = 0. Since π is not
a fortress (since there are no superhurdles), we can conclude by Theorem 2.12 that d(π) = 4.
Applying the reversal δ3,3 to π results in γ = [2,−3,−1,−4]. The breakpoint diagram for
this permutation is depicted in Figure 4.2(b). We find that h(γ) = 0 and c(γ) = 1. Since
γ is not a fortress, d(γ) = 4 by Theorem 2.12. Since both of these permutations have the
same reversal distance, π and γ are laterally related by δ3,3.

0 3 4 6 5 1 2 8 7 9
2 −3 1 −4

(a)

0 3 4 6 5 2 1 8 7 9
2 −3 −1 −4

(b)

Figure 4.2: Example of two laterally related permutations.

The reversal poset is defined in such a way that laterally-related permutations are hidden.
We do not have a characterization for when laterally-related pairs occur and it is unknown
how often they occur.

If a signed permutation is maximal in the poset, we say the permutation is terminal to
avoid confusion with permutations that have maximal reversal distance. In other words, π
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is terminal if d(δij(π)) ≤ d(π) for all δij. Note that every maximal permutation in S±(n) is
terminal in Rn. However, there exists terminal permutations in Rn that are not maximal.

Example 4.3. Consider π = [2,−3, 1,−4] ∈ S±(4). We calculated d(π) = 4 in Example 4.2.
We know from Theorem 3.16 that the maximal reversal distance for a permutation in S±(4)
is 5. It turns out that d(δi,j(π)) ≤ 4 for all reversals δi,j, which implies that π is terminal
but not maximal.

It is unknown when terminal non-maximal permutations occur, but they appear to be
somewhat common among permutations of reversal distance n for n ≥ 4. This next result
is a corollary of Theorem 3.16.

Corollary 4.4. Let En be the undirected Cayley graph of S±(n) generated by reversals. If
Rn is interpreted as a graph, Rn is a subgraph of En built by removing all edges connecting
laterally-related permutations. Moreover, the diameter of both graphs is n + 1 for n 6= 1, 3
and n otherwise.

Define Rn,i := {π ∈ S±(n) | d(π) = i} and rn,i := |Rn,i|. Note that Rn,i is the collection
of all permutations in S±(n) with the same reversal distance i, which we can think of as a
row in the poset since the poset is ranked. Also, notice that by Theorem 3.16, Rn,i 6= ∅ if and
only if 0 ≤ i ≤ n + 1 for n 6= 1, 3 and 0 ≤ i ≤ n for n = 1, 3. In addition, by Theorem 3.3,
it follows that each Rn,i is partitioned into various shift classes. We end this chapter by
discussing rn,0, rn,1, and rn,2.

The reversal poset has a fascinating structure. We know that Rn,0 only contains the
identity permutation on n elements since this is the only permutation with reversal distance
zero. Hence rn,0 = 1 for all n ∈ N. Below we discuss how to count Rn,1 and Rn,2.

Theorem 4.5. We have rn,1 = Tn =
(
n+1
2

)
for all n ∈ N.

Proof. We know that for any π ∈ Rn,1, π = δi,j(In) for some 1 ≤ i ≤ j ≤ n. Since there are
Tn =

(
n+1
2

)
distinct reversals, it follows that rn,1 = Tn =

(
n+1
2

)
. �

Theorem 4.6. We have rn,2 = (n−1)n(n+1)2

6
for all n ∈ N.

Proof. Let π ∈ S±(n) with reversal distance 2. Therefore, π = δi,jδk,l, where δi,j 6= δk,l. We
will refer to i, j, k, l as the ends of our reversals. There are three cases we consider:

• Case 1: There are two distinct values amongst i, j, k, l;

• Case 2: There are three distinct values amongst i, j, k, l;

• Case 3: There are four distinct values amongst i, j, k, l.
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Subcases Count

Case 1
i = j, k = l

(
n
2

)
i = j = k, k < l

(
n
2

)
i = j = l, k < l

(
n
2

)

Case 2

i < k < l, j = l
(
n
3

)
i < l < j, k = i

(
n
3

)
i < j < l, k = j

(
n
3

)
k < l < j, l = j

(
n
3

)
i < j < k, k = l 2

(
n
3

)
i < k < j, k = l

(
n
3

)
Case 3

i < j < k < l
(
n
4

)
i < k < j < l

(
n
4

)
k < i < l < j

(
n
4

)
i < k < l < j

(
n
4

)
Table 4.1: Summary of cases for the proof of Theorem 4.6.

Each of these cases and their respective subcases are outlined in Table 4.1.
In Case 1, the first subcase implies both subintervals have size one. In this case, there are(

n
2

)
ways to choose the two distinct values amongst i, j, k, l. In the second and third subcases,

there is one subinterval of size one and the second subinterval is larger, where the subinterval
of size 1 is “nested” in the other. In the second subcase, note that if i = j = k < l, then
δi,jδk,l = δk,lδl,l, and so we can restrict ourselves to this situation. Just as in the first case,
the count is

(
n
2

)
. The third subcase is similar.

In Case 2, subcases 1 and 2 are similar to subcases 2 and 3 in Case 1, but with a smaller
subinterval of a different size. Subcases 3 and 4 involve our two reversals overlapping in a
single common position. The last subcase happens when one reversal is a subinterval of size
1. This subcase covers the situation where k < i < j and i = j. In each of these subcases,
there are

(
n
3

)
ways to choose three distinct values for i, j, k, l. The fifth subcase counts the

number of ways in which one of our reversals is a subinterval of size one and the other is a
subinterval of size greater than 1, where the reversals do not intersect in positions. There
are

(
n
3

)
ways to pick three distinct endpoints and two ways we can choose which reversal is

a subinterval of size greater than 1. There are three other situations in which this happens:
k < i < j and k = l, k < l < j and i = j, and i < k < l and i = j. These subcases are
counted in subcase 5.

In Case 3, subcase 1 occurs when the reversals have no overlap in position. Subcases
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2 and 3 occur when the two reversals overlap in position. In subcase 2, we note that
δi,jδk,l = δi+j−l,i+j−kδi,j. Subcase 3 has a similar analogue. Subcase 4 happens when one
reversal is “nested” in the other. In each subcase, there are

(
n
4

)
ways to choose four distinct

values for i, j, k, l.
Thus, there are 3

(
n
2

)
+ 7
(
n
3

)
+ 4
(
n
4

)
elements in Rn,2. One can verify that

3

(
n

2

)
+ 7

(
n

3

)
+ 4

(
n

4

)
=

(n− 1)n(n+ 1)2

6
.

Thus, rn,2 = (n−1)n(n+1)2

6
for all n ∈ N. �

The first few terms in the sequence for rn,2 are 0, 3, 16, 50, 120, 245, 448, 756. Note that
we verified these values using the software package baobabLUNA [4]. It turns out that rn,2
is the number of lattice rectangles (squares included) inside half of an Aztec diamond of
order n + 1, according to the OEIS entry A004320 [11]. This shape is obtained by stacking
n+ 1 rows of consecutive unit lattice squares, with the centers of rows vertically aligned and
consisting successively of 2(n+ 1), 2(n+ 1)− 2, ..., 4, 2 squares. In Chapter 6, we enumerate
rn,n+1 and discuss partial results for rn,n when n 6= 1, 3.
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Chapter 5

Important Sets Of Compositions

Compositions are going to play an important role in proving results about the reversal poset
for larger ranks. A composition of n is an ordered list of positive integers whose sum is n,
denoted

α = (α1, ..., αk).

We refer to each αi as a part of the composition. Let C(n) denote the set of all compositions
on n.

Example 5.1. Consider C(4). We see that

C(4) = {(1, 1, 1, 1), (1, 2, 1), (1, 1, 2), (2, 1, 1), (3, 1), (1, 3), (2, 2), (4)}.

One of these compositions has 4 parts, three have 3 parts, three have 2 parts, and one has
1 part.

As we shall see, each part of a composition will correspond to the number of black edges
in a cycle in the breakpoint diagram for certain permutations. Here are four subsets of
compositions in which we are interested.

1. C1(n) := {(α1, . . . , αk) ∈ C(n) | each αi is odd and greater than 1},

2. C2(n) := {(α1, . . . , αk) | αi > 1 for all i, there exists j such that αj ≥ 4 and for all
i 6= j, αi is odd},

3. C3(n) := {(α1, . . . , αk) ∈ C1(n) | k ≥ 3}.

For each i, define ci(n) := |Ci(n)|. It is quite obvious that C3(n) ⊆ C1(n), which means
c3(n) ≤ c1(n).
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Example 5.2. Let’s look at compositions of 9. We see that (3, 3, 3) is an element of C3(9),
and hence an element of C1(9) since each part is odd and greater than 1. An element of
C2(9) is (3, 6) since all parts are odd except one part that is greater than or equal to 4.

Below, we enumerate the set C1(n) using a recursive formula.

Theorem 5.3. We have c1(1) = c1(2) = 0, c1(3) = 1 and for n ≥ 4

c1(n) = c1(n− 2) + c1(n− 3).

Proof. Compositions of 1 and 2 do not have any compositions consisting of only odd parts
greater than 1, so c1(1) = c1(2) = 0. The only composition of 3 that meets the criteria is
(3), so c1(3) = 1. Suppose n ≥ 4. A composition α ∈ C1(n) either ends in 3 or it does not.
If α ends in 3, then delete the last part to obtain a composition of n− 3. If α does not end
in 3, subtract 2 from the last part to obtain a composition of n − 2. The aforementioned
process is reversible. Therefore, c1(n) = c1(n− 2) + c1(n− 3). �

The first few terms of the sequence determined by c1(n) are 0, 0, 1, 0, 1, 1, 1, 2, 2, 3. It turns
out that c1(n) is the Padovan sequence (OEIS entry A000931 [12]), which counts the number
of compositions of n into parts congruent to 2 (mod 3). We do not have results on how to
count C2(n) and C3(n). The first non zero term of c2(n) is 1 when n = 4, corresponding to
the composition (4). The first nonzero term of c3(n) is 1 when n = 9 corresponding to the
composition (3,3,3). Neither of these sequences appear in the OEIS.
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Chapter 6

Enumeration of Maximal
Permutations

The goal of this chapter is to enumerate Rn,n+1 and provide partial results for Rn,n. First,
we introduce the Hultman numbers.

The Hultman numbers H(n, k) are defined to be the number of unsigned permutations
in S(n) whose breakpoint diagram consists of k cycles [6]. We are specifically interested in
H(n, 1), which counts the number of unsigned permutations having a breakpoint diagram
consisting of a single cycle. According to [6], we have

H(n, 1) =

{
2n!
n+2

, n is even

0, n is odd.

Recall that the breakpoint diagram for permutations in S±(n) consists of n+ 1 black edges.
The values for H(n, 1) and Remark 3.21 lead to the following lemma.

Lemma 6.1. If π ∈ S±(n) is a maximal permutation such that every hurdle of B(π) is
minimal, then each cycle consists of an odd number of black edges.

The next theorem is the main result of this thesis.

Theorem 6.2. For n 6= 1, 3, we have

rn,n+1 =
∑

(α1,...,αk)∈C1(n+1)

(
k∏
i=1

2(αi − 1)!

αi + 1

)
·

{
α1, if k 6= 1

1, if k = 1
.

Proof. Assume π is maximal. Then by Remark 3.21, π consists of all positive entries and
each component of B(π) is a single unoriented cycle that is a hurdle. There are three cases
in which π is maximal.
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1. c(π) = h(π) = 1;

2. c(π) = h(π) > 1 and all hurdles are minimal;

3. c(π) = h(π) > 1 and there exists a maximal hurdle and the rest are minimal.

Notice that Case 1 only occurs when n is even by Lemma 6.1, in which case we have
H(n, 1) = 2n!

n+1
many permutations. This case corresponds to k = 1 in our formula.

For Case 2, we number the minimal hurdles from left to right: N1, . . . , Nk, where αi is
the number of black edges in Ni. Then each permutation in Case 2 is associated with a
composition (α1, α2, . . . , αk) ∈ C1(n + 1) (since k > 1 and each αi > 1), which tracks the
number of black edges in each cycle. Since the number of choices for each Ni is H(αi −
1, 1), the number of permutations associated with a fixed composition (α1, α2, . . . , αk) is∏k

i=1H(αi − 1, 1) =
∏k

i=1
2(αi−1)!
αi+1

.
In Case 3, each breakpoint diagram for a maximal permutation π with a maximal hurdle

can be obtained from a unique breakpoint diagram for a maximal permutation γ with no
maximal hurdles by doing i cyclic shifts, where 1 ≤ i ≤ α1 − 1, where α1 is the number
of black edges in the leftmost cycle in the breakpoint diagram for γ by Corollary 3.19. We
note that the resulting breakpoint diagram is indeed maximal by Corollary 3.17. So, each
permutation in Case 3 results from a sequence of cyclic shifts of a permutation in Case 2.
Since k > 1, here is how we construct the breakpoint diagram in this case. First, choose
a composition (α1, . . . , αk) ∈ C1(n + 1). For each αi, choose a breakpoint diagram with αi
many black edges that consists of a single cycle. There are H(αi − 1, 1) many choices for
each i. Lay out the cycles side by side to obtain a breakpoint diagram for a permutation
in Case 2. Now, to obtain a permutation in Case 3, do a sequence of i cyclic shifts where
1 ≤ i ≤ α1 − 1.

That is, given a choice of a sequence of hurdles, we construct α1 many breakpoint dia-
grams for a maximal permutation, the breakpoint diagram we started with (counted in Case
2) plus the α1 − 1 cyclic shifts. We obtain the desired formula from these three cases. �

The first few terms of rn,n+1 are 0, 1, 0, 8, 3, 180, 64, 8067. We verified these values using
baobabLUNA [4]. This sequence does not appear in the OEIS.

We have a classification of the types of permutations of size n that have reversal distance
n, which can help us estimate the size of Rn,n. We know by Corollary 3.11 that a permutation
with reversal distance n cannot be a fortress, so this reduces the cases that we have to
examine. It is clear there are two cases when examining the formula for reversal distance
from Theorem 2.12.

• Case 1: Either all the cycles in the breakpoint diagram are not oriented, or
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• Case 2: There is one oriented cycle in the breakpoint diagram.

We focus on Case 1 in our analysis. We do not attempt to classify permutations in Case 2,
since it appears to be quite complex due to the inclusion of negative values in the permutation
(by Theorem 3.12). For Case 1, there are three possibilities:

(a) All cycles are distinct components and all are unoriented except for one trivial cycle.

(b) All cycles are unoriented and exactly one pair of cycles overlap to form a single com-
ponent. The remaining cycles are distinct components.

(c) Every cycle is a distinct unoriented component and we have one (unoriented) non-
hurdle while every other cycle is a hurdle.

Let Xn, Yn, and Zn be the set of permutations in S±(n) following Cases 1(a), 1(b),
and 1(c) respectively, and let xn := |Xn|, yn := |Yn|, and zn := |Zn|. By Theorem 3.15,
we know permutations counted by xn, yn, and zn are unsigned permutations. Moreover,
analysing the formula for reversal distance makes it clear that Xn ∪ Yn ∪ Zn is the set of
permutations in Rn,n that are unsigned. In particular, Xn ∪ Yn ∪Zn is exactly the collection
of terminal non-maximal permutations with reversal distance equal to n. Since the three
sets are pairwise disjoint,

|Xn ∪ Yn ∪ Zn| = xn + yn + zn.

Next we enumerate the permutations in Case 1(a) above. For convenience, we define r0,1 := 0.

Theorem 6.3. We have xn = (n+ 1) · rn−1,n.

Proof. First, note that rn−1,n = 0 when n = 2 and n = 4 by Theorem 3.16. The cases
involving n = 1, 2, 3, 4 are easily verified by hand. Assume n ≥ 5 and let π ∈ Xn. Then
B(π) consists of a single trivial cycle whose removal results in a breakpoint diagram for a
maximal permutation in S±(n − 1). Let π̂ ∈ S±(n − 1) be the maximal permutation that
results from removal of this single trivial cycle. Thus, π̂ ∈ Rn−1,n. There are rn−1,n many
choices for π̂ and n + 1 many ways to reinsert the trivial cycle. This results in the desired
formula. �

The first few terms of xn are 0, 0, 4, 0, 48, 21, 1440, 576. We verified these values using
baobabLUNA [4]. This sequence does not appear in the OEIS. We conjecture a formula for
yn in Chapter 7. Next we provide an upper bound for zn.
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Theorem 6.4. We have

zn ≤
∑

(α1,...,αk)∈C3(n+1)

((
k−1∏
i=1

2(αi − 1)!

αi + 1

)((
k + αk − 1

αk

)
− (αk + k − 1)

+ (α1 − 1)

((
k + αk − 2

αk

)
− (k − 1)

)))
.

Proof. Let π ∈ Zn. Note that every cycle of B(π) is a distinct unoriented component
and there is exactly one non-hurdle component (while every other component is a hurdle).
Assume the breakpoint diagram for π consists of k cycles, say N1, N2, · · · , Nk, where αi
corresponds to the number of black edges in Ni and Nk is the non-hurdle. In order for the
breakpoint diagram to have an unoriented non-hurdle, k ≥ 3. Also, since there are no trivial
cycles, each αi > 1. Therefore, the composition (α1, α2, . . . , αk) ∈ C3(n + 1). We consider
two cases.

First, assume each Ni is a minimal hurdle for 1 ≤ i ≤ k − 1. Then place N1, · · · , Nk−1
in the breakpoint diagram from left to right. There are

∏k−1
i=1

2(αi−1)!
2αi

ways to do this. We
now place Nk in the breakpoint diagram such that Nk is an unoriented non-hurdle. We must
place the αk black edges in k gaps in the breakpoint diagram (there are k−2 gaps in between
our k− 1 cycles and two gaps on either side of the breakpoint diagram). In total, we can do
this in

(
αk+k−1
αk

)
ways (which is the formula for counting the number of arrangements of αk

unlabeled balls in k labeled boxes). However, some of these configurations are not allowable.
Note that there are αk + k − 1 ways to place the black edges of Nk so that Nk covers none
of the other cycles or covers all other cycles and does not separate, which occurs when we
place all αk edges on either the far left or far right of the breakpoint diagram, or if all αk
black edges are placed in a gap between two cycles. Thus, there are(

αk + k − 1

αk

)
− (αk + k − 1)

allowable ways to place Nk such that Nk is a non-hurdle in this case.
Next, assume N1 is the maximal hurdle in the breakpoint diagram. By Corollary 3.19,

each breakpoint diagram for a permutation with a maximal hurdle can be obtained from a
unique breakpoint diagram for a permutation γ with no maximal hurdles by doing i cyclic
shifts, where 1 ≤ i ≤ α1 − 1, where α1 is the number of black edges in the leftmost cycle in
the breakpoint diagram for γ. Thus, there are α1 − 1 distinct cyclic shifts of a breakpoint
diagram resulting in N1 being a maximal hurdle. So, there are

(α1 − 1)
k−1∏
i=1

2(αi − 1)!

2αi
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ways to rearrange the each of the first k− 1 cycles corresponding to the various cyclic shifts.
However, Nk must be covered by N1 in order to be a non-hurdle. Thus, there are αk black
edges that need to be placed in the k − 1 gaps that occur under N1. There are

(
k+αk−2
αk

)
ways to do this in general, but some configurations are not allowed. There are k − 1 ways
in which all αk black edges fall between two cycles in the breakpoint diagram, meaning Nk

would not cover any cycles. So, there are(
k + αk − 2

αk

)
− (k − 1)

allowable ways to insert the black edges of Nk. �

Using baobabLUNA [4], we have verified that the formula given in Theorem 6.4 agrees
with the actual count of permutations in Zn for 1 ≤ n ≤ 8. The first few terms of zn are
0, 0, 0, 0, 0, 0, 0, 9. The first few terms are 0 since C3(n + 1) = ∅ for n ≤ 7. This gives us
some intuition that our formula does count the number of unsigned permutations with one
unoriented non-hurdle. However, it is feasible that our formula for zn is an upper bound since
it is possible that our construction in the proof of Theorem 6.4 yields breakpoint diagrams
that do not correspond to permutations, in which case we have overcounted. However, we
conjecture that the formula in Theorem 6.4 is exact.
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Chapter 7

Open Problems

We conclude with a list of open problems:

• Enumerate the signed permutations on 1 through n that have fixed reversal distance.
In this thesis, we solved the problem for reversal distance 0, 1, 2, and n+1 and obtained
partial results for reversal distance n. In particular, fully characterize and enumerate
signed permutations with reversal distance n. To do this, we need to determine yn and
zn and handle the cases involving the existence of a single oriented cycle.

• Characterize the terminal non-maximal permutations according to reversal length.
Such a characterization will likely involve necessary and/or sufficient conditions on
the structure of the permutation or the corresponding breakpoint diagram.

• Characterize the pairs of signed permutations that are laterally related.

• Determine whether n − 1 is a sharp bound on reversal distance for a fortress for all
n ≥ 17.

• We conjecture that

yn =
∑

(α1,...,αk)∈C2(n+1)

(
k∑
j=1

((∏
i 6=j

2(αi − 1)!

αi + 1

)(
H(αj − 1, 2)−

⌈
αj − 3

2

⌉))
·

{
α1, if k 6= 1

1, if k = 1

)
,

zn =
∑

(α1,...,αk)∈C3(n+1)

((
k−1∏
i=1

2(αi − 1)!

αi + 1

)((
k + αk − 1

αk

)
− (αk + k − 1)

+ (α1 − 1)

((
k + αk − 2

αk

)
− (k − 1)

)))
.

35



• Determine the distribution of maximal permutations among all signed permutations
of length n. We conjecture that

lim
n→∞

rn,n+1

2(n− 1)!
= 1 if n is odd,

lim
n→∞

rn,n+1

2(n− 3)!
= 1 if n is even.

This would imply that if we choose a signed permutation uniformly at random, the
probability of selecting a maximal permutation is about n/2n for n odd and n(n −
1)(n− 2)/2n for n even. That is, as n grows, it is exponentially unlikely to happen.
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