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ABSTRACT

STRUCTURAL PROPERTIES OF BRAID GRAPHS IN SIMPLY-LACED
TRIANGLE-FREE COXETER SYSTEMS

JILLIAN BARNES

Any two reduced expressions for the same Coxeter group element are related

by a sequence of commutation and braid moves. We say that two reduced expres-

sions are braid equivalent if they are related via a sequence of braid moves, and

the corresponding equivalence classes are called braid classes. Each braid class

can be encoded in terms of a braid graph in a natural way. In a recent paper,

Awik et al. proved that every reduced expression in a simply-laced Coxeter group

has a unique factorization as a product of so-called links, which in turn induces

a decomposition of the braid graph into a box product of the braid graphs for

each link factor. Moreover, the authors proved that when the Coxeter system

is triangle free (i.e., the corresponding Coxeter graph has no three-cycles), the

braid graph for a reduced expression is a partial cube (i.e., isometric to a sub-

graph of a hypercube). In this thesis, we study the structural properties of braid

classes in simply-laced triangle-free Coxeter systems. In particular, we provide

precise information about the local structure of reduced expressions in the braid

class for a link and produce an alternate proof of the fact that every braid graph

in simply-laced triangle-free Coxeter systems is a partial cube. Moreover, we

outline the obstructions to proving the conjectures that every braid graph in a

simply-laced triangle-free Coxeter system is median and corresponds to the Hasse

diagram for a distributive lattice.
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Chapter 1

Graphs and partially ordered sets

This chapter introduces the necessary terminology and results regarding graphs and partially
ordered sets. In this chapter, we will assume all graphs are connected and simple.

If G is a graph, let V (G) denote the vertex set of G and let E(G) denote the edge set
of G. If S ⊆ V (G) is any subset of vertices of G, then we define the induced subgraph ⟨S⟩ to
be the graph whose vertex set is S and whose edge set consists of all of the edges in E(G)
that have endpoints in S.

Example 1.1. Consider the graphs depicted in Figures 1.1(a) and 1.1(b). The subgraph
highlighted in Figure 1.1(a) is the induced subgraph generated by S = {a, b, c, d, e}. However,
the subgraph highlighted in Figure 1.1(b) is not an induced subgraph since the edge joining
a and f is not in the subgraph.

a c

b

e

d

(a)

f

a c

b

(b)

Figure 1.1: An example and non-example of an induced subgraph.

An embedding of a graph G into a graph H is an injection f ∶ V (G) → V (H) with the
property that if u and v are adjacent vertices in G, then f(u) and f(v) are adjacent in H.
That is, an embedding is an injective graph homomorphism. If in addition, f(u) and f(v)
adjacent in H implies u and v adjacent in G, then we say that f is an induced embedding.
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If f is an induced embedding, then G is isomorphic to the subgraph of H induced by the
image of f .

Example 1.2. Figure 1.2(a) provides an example of an induced embedding while the embed-
ding shown in Figure 1.2(b) is not an induced embedding due to the fact that {g(a), g(d)}
is an edge in the graph H2 but {a, d} is not an edge in the graph G2.

e

d

c

b

aG1

f(a) f(c)

f(b)

f(e)

f(d)

H1

f

(a)

d

c

b

aG2

g(d)

g(a) g(c)

g(b)
H2

g

(b)

Figure 1.2: An induced embedding and an embedding that is not induced.

We can view any connected graph G as a metric space by taking the standard geodesic
metric. That is, the distance between u, v ∈ V (G) is defined via

dG(u, v) ∶= length of any minimal path between u and v.

Given the metric above, we define the diameter of G to be

diam(G) ∶=max{dG(u, v) ∣ u, v ∈ V (G)}.

That is, diam(G) is the longest of all shortest paths between any two vertices u and v. Two
vertices u and v in E(G) are said to be diametrical if d(u, v) = diam(G).

Example 1.3. Let G be the graph in Figure 1.3. We see that diam(G) = 4. One path that
yields the diameter has been highlighted in magenta. It follows that u and v are diametrical.
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u

v

Figure 1.3: Example of a graph with diameter 4.

An isometric embedding of G into H is a function f ∶ V (G) → V (H) with the property
that dG(u, v) = dH(f(u), f(v)) for all u, v ∈ V (G). Note that every isometric embedding is
indeed injective. In this case, G is isometric to an induced subgraph of H. In other words,
there exists a distance-preserving bijection between G and the subgraph of H induced by
the image of f . Since an isometry is injective and two vertices are adjacent if and only if
the distance between them is one, every isometric embedding is also an induced embedding.
However, an induced embedding is not necessarily an isometric embedding.

Example 1.4. The induced embedding f seen in Figure 1.2(a) is not an isometric embedding
since dG(a, e) = 4 while dH(f(a), f(e)) = 2.

Given two graphs G1 and G2, we define the box product (also referred to as the Cartesian
product) of the two graphs, denoted G1◻G2, to be the graph with vertex set V (G1)×V (G2)
and there is an edge from (x1, y1) to (x2, y2) if and only if either

(a) x1 = x2 and there is an edge from y1 to y2 in G2, or

(b) y1 = y2 and there is an edge from x1 to x2 in G1.

Note that the operation ◻ is associative.

Example 1.5. Two examples of box products are depicted in Figure 1.4. We have used
colors to aid the reader.

For a positive integer n we will denote the set of binary strings of length n by {0,1}n.
That is,

{0,1}n ∶= {a1a2⋯an ∣ ak ∈ {0,1}}.
The hypercube graph of dimension n ≥ 0, denoted by Qn, is defined to be the graph whose
vertices are elements of {0,1}n with two binary strings connected by an edge exactly when
they differ by a single digit (i.e., the Hamming distance between the two vertices is equal to
one). Note that Q0 consists of a single vertex labeled by the empty string.
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G1

◻

G2

=

G1 ◻G2

(a)

H1

◻

H2

=

H1 ◻H2

(b)

Figure 1.4: Examples of the box product of graphs.

A partial cube is a graph that is isometric to a subgraph of a hypercube. The isometric
dimension of a partial cube is the minimum dimension of a hypercube into which it may
be isometrically embedded. That is, the isometric dimension of a partial cube G is the
nonnegative integer

dimI(G) ∶=min{m ∈ N ∪ {0} ∣ there exists an isometric embedding of G into Qm}.

Example 1.6. The graphs G1 and G2 given in Figures 1.5(a) and 1.5(b), respectively, are
examples of partial cubes. In each case, we have provided possible isometric embeddings
into the cube. It is easily seen that the isometric dimension is 3 for both graphs.

The following proposition is a result from [13].

Proposition 1.7. If G1 and G2 are partial cubes, then G1◻G2 is a partial cube. Moreover,
dimI(G1 ◻G2) = dimI(G1) + dimI(G2).

Example 1.8. Since each of the factors in both subfigures of Figure 1.4 are partial cubes,
the resulting box products are partial cubes. Moreover, we see that

dimI(G1 ◻G2) = dimI(G1) + dimI(G2) = 2 + 1 = 3

and
dimI(H1 ◻H2) = dimI(H1) + dimI(H2) = 3 + 1 = 4,

as expected.

We now mimic the development in Section 3 of [13]. Let G be a graph. For any two
vertices u, v ∈ V (G), we define Wuv to be the set of vertices that are closer to u than to v.
That is,

Wuv ∶= {w ∈ V (G) ∣ d(w,u) < d(w, v)}.
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G1

101 011

111

000

100 010001

110
ϕ

(a)

G2

101 011

111

000

100 010001

110
ρ

(b)

Figure 1.5: Examples of partial cubes.

We refer to the set Wuv and the corresponding induced subgraph ⟨Wuv⟩ as a semicube of G.
The semicubes Wuv and Wvu are called opposite semicubes. Notice that Wuv is defined even
if {u, v} is not an edge in G. The next two results appear in [13].

Proposition 1.9. A graph G is bipartite if and only if Wuv and Wvu form a partition of
V (G) for any edge {u, v} ∈ E(G).

Proposition 1.10. If w ∈ Wuv for some edge {u, v} ∈ E(G), then d(w, v) = d(w,u) + 1.
Moreover, Wuv = {w ∈ V (G) ∣ d(w, v) = d(w,u) + 1}.

The previous proposition implies that all of the vertices that are in Wuv are exactly one
step further from v than u in G.

We define the Djoković–Winkler relation θ on E(G) via {x, y} θ {u, v} if and only if
{u, v} joins a vertex in Wxy with a vertex in Wyx. It is important to note that the relation
θ is always reflexive and symmetric, but not always transitive [13].
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The following proposition from [13] will play an important role in a later chapter of this
thesis.

Proposition 1.11. Let G be a connected graph. The following statements are equivalent:

(i) G is a partial cube.

(ii) G is bipartite and θ is an equivalence relation.

(iii) G is bipartite and for all {x, y},{u, v} ∈ E(G), if {x, y} θ {u, v}, then {Wxy,Wyx} =
{Wuv,Wvu}.

(iv) G is bipartite and for any pair of adjacent vertices of G, there is a unique pair of
opposite semicubes separating these two vertices.

Note that if G is a partial cube, there may be more than one pair of adjacent vertices
that generate the unique semicubes mentioned in part (iv) of the previous proposition (see
Example 1.12). In addition, if G is a partial cube, then by the previous result, G is bipartite
and θ is an equivalence relation on E(G). In this case, if {u, v} ∈ E(G), let Fuv denote the
equivalence class of {u, v} under θ. Then

Fuv = {{a, b} ∈ E(G) ∣ {u, v} θ {a, b}} = {{a, b} ∈ E(G) ∣ a ∈Wuv, b ∈Wvu},

where the second equality follows from Proposition 1.10. That is, Fuv is the set of edges
joining the semicubes Wuv and Wvu.

Example 1.12. Consider the partial cubeG in Figure 1.6. For the edge {u, v}, the semicubes
Wuv and Wvu have been highlighted in blue while the equivalence class Fuv consists of the
three magenta edges.

u v

Figure 1.6: Example of semicubes and the corresponding equivalence class of edges.

The following result appears in [13].
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Proposition 1.13. If G is a partial cube, then dimI(G) is equal to the number of equivalence
classes induced by the Djoković-Winkler relation θ.

Example 1.14. Given the same partial cube G from Example 1.12, it turns out that there
are four equivalence classes of edges induced by the Djoković–Winkler relation θ on G. The
four equivalence classes are indicated by color in Figure 1.7. Therefore, dimI(G) = 4.

Figure 1.7: Equivalence classes of edges induced by the Djoković–Winkler relation.

Given two vertices u and v in a graph G, we define the interval between u and v, denoted
I(u, v), to be the collection of vertices on any shortest path between u and v. A connected
graph is defined to be median if for any three vertices, u, v, and w,

∣I(u, v) ∩ I(u,w) ∩ I(v,w)∣ = 1.

In other words, there is a unique vertex x that simultaneously lies on a shortest path between
u and v, a shortest path between u and w, and a shortest path between v and w.

Example 1.15. Given the labeling in Figure 1.8(a), I(u, v)∩I(u,w)∩I(v,w) = {x}. Similar
calculations for any three vertices of G1 verify that G1 is median. On the other hand, in
Figure 1.8(b), we see that I(u, v)∩I(u,w)∩I(v,w) = ∅, so G2 is not median. In both figures,
the interval I(u, v) has been highlighted in red, the interval I(u,w) has been highlighted in
blue, and the interval I(v,w) has been highlighted in green.

The next proposition can be found in [14].

Proposition 1.16. If a graph G is median, then G is a partial cube.

Example 1.17. Since the graph G2 given in Figure 1.8(b) is a partial cube (see Example 1.6)
but is not median (see Example 1.15), the converse of Proposition 1.16 does not hold.

The following proposition is well known.

Proposition 1.18. If graphs G1 and G2 are median, then G1 ◻G2 is median.

7



u x

G1

w

v

(a)

uv

w

G2

(b)

Figure 1.8: Examples of a median and non-median graph.

We now turn our attention to partially ordered sets. A partially ordered set (or poset
for short) is a pair (P,≤) consisting of a set P together with a relation ≤ that is reflexive,
antisymmetric, and transitive. For x, y ∈ P , we say x covers y, denoted x ⋖ y, if x < y and
there is no element z ∈ P such that x < z < y. A Hasse diagram is a graphical representation
of a poset (P,≤), where vertices are elements of P , x and y are connected by an edge if
x ⋖ y, and there is an implied upward orientation (i.e., smaller elements are lower in the
Hasse diagram). Examples of various Hasse diagrams for posets can be found in Figure 1.9.
We will often abuse terminology and identify a poset with its Hasse diagram.

a b

(a)

a

b c d

e

(b)

e

b

a

c

d

(c) (d)

Figure 1.9: Examples of Hasse diagrams for posets.

A poset is ranked (also called graded) if there is a function ρ ∶ P → N ∪ {0} such that
ρ(x) = 0 if x is a minimal element, and ρ(y) = ρ(x) + 1 if x ⋖ y. The poset in Figure 1.9(c)
is not a ranked poset while the other three posets in Figure 1.9 are ranked. A lattice is a
special kind of poset where every pair of elements has a unique greatest lower bound (meet)
and a unique least upper bound (join) in the poset. If P is a lattice, we denote the meet of
x and y by x ∧ y and the join of x and y by x ∨ y. The posets in Figures 1.9(b), 1.9(c), and
1.9(d), are examples of lattices, while the poset in Figure 1.9(a) is not a lattice since there
is not a unique least upper bound of a and b. A distributive lattice is a lattice in which the
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following identities hold for all x, y, z ∈ P :

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

It turns out that it is enough to verify just one of the identities. Certainly, the poset in
Figure 1.9(a) is not a distributive lattice since it is not a lattice. In Figure 1.9(b), we see
that

b ∧ (c ∨ d) = b ∧ a = b ≠ e = e ∨ e = (b ∧ c) ∨ (b ∧ d),
which shows that the poset in Figure 1.9(b) is not a distributive lattice. The lattice in
Figure 1.9(c) is also not distributive since

b ∨ (c ∧ d) = b ∨ d = e ≠ a = a ∧ a = (b ∨ c) ∧ (b ∨ d).

However, one can show that the poset in Figure 1.9(d) is a distributive lattice.
The next proposition can be found in [15].

Proposition 1.19. A lattice is a distributive lattice if and only if it does not have either of
the lattices from Figures 1.9(b) or 1.9(c) as a sublattice.

From [6] we have the following result.

Proposition 1.20. The underlying graph of the Hasse diagram for a finite distributive
lattice is median.

Example 1.21. Since the poset given in Figure 1.9(d) is a distributive lattice, the under-
lying graph of the Hasse diagram is median according to the previous result. On the other
hand, the underlying graph for the poset in Figure 1.9(b) is median, but the poset is not a
distributive lattice, which shows the converse to Proposition 1.20 is false.

A similar result from [1]1 states the following.

Proposition 1.22. A graph G is the underlying graph of the Hasse diagram of a distributive
lattice if and only if G is median and there exist two vertices u and v such that every vertex
in G lies on a shortest path joining u and v.

Following [5], we define a ring of sets to be a family of sets that is closed under the
operations of set union and set intersection. It is clear that every ring of sets is a ranked
poset under inclusion. Every ring of sets ordered by inclusion is also a distributive lattice.
The following proposition from [5], sometimes called Birkhoff’s Representation Theorem or
the Fundamental Theorem for Finite Distributive Lattices (although it is not usually stated
in this form), states that every finite distributive lattice corresponds to a ring of sets.

1D: I think this should be A Ternary Operation...[6] by Birkhoff and Kiss.
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Proposition 1.23. A finite poset is a distributive lattice if and only if it is isomorphic to a
ring of sets ordered by inclusion.

Since every ring of sets is ranked, we immediately obtain the following corollary.

Corollary 1.24. Every finite distributive lattice is ranked.
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Chapter 2

Coxeter systems and braid graphs

This chapter will discuss the necessary information regarding Coxeter systems and their
overall structure. We will also introduce braid classes and their graphical representation
into braid graphs, as well as related concepts of braid shadows and links.

A Coxeter matrix is an n×n symmetric matrixM = (mij) with entriesmij ∈ {1,2,3, . . . ,∞}
such that mii = 1 for all 1 ≤ i ≤ n and mij ≥ 2 for i ≠ j. A Coxeter system is a pair (W,S)
consisting of a finite set S = {s1, s2, . . . , sn} and a group W , called a Coxeter group, with
presentation

W = ⟨s1, s2, . . . , sn ∣ (sisj)m(si,sj) = e⟩,
where m(si, sj) ∶= mij for some n × n Coxeter matrix M = (mij). For s, t ∈ S, the condition
m(s, t) = ∞ means that there is no relation imposed between s and t. It turns out that
the elements of S are distinct as group elements and m(s, t) is the order of st [11]. Since
elements of S have order two, the relation (st)m(s,t) = e can be written as

sts⋯±
m(s,t)

= tst⋯±
m(s,t)

with m(s, t) ≥ 2 factors. When m(s, t) = 2, st = ts is called a commutation relation and when
m(s, t) ≥ 3, the corresponding relation is called a braid relation. The replacement

sts⋯±
m(s,t)

z→ tst⋯±
m(s,t)

is called a commutation move if m(s, t) = 2 and a braid move if m(s, t) ≥ 3.
A Coxeter system (W,S) can be encoded by a unique Coxeter graph Γ having vertex set

S and edges {s, t} for each m(s, t) ≥ 3. Each edge is labeled with the corresponding m(s, t).
Typically, labels of 3 are omitted since they are the most common. In this case, we say that
(W,S), or just W , is of type Γ, and we may denote the Coxeter group as W (Γ) and the
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generating set as S(Γ) for emphasis. We say that a Coxeter system is simply laced provided
m(s, t) ≤ 3 for all s, t ∈ S. In the case that the Coxeter system has no three-cycles, (W,S)
is called triangle free. We say that a Coxeter system (W,S) (or the group W ) is of type Λ
if (W,S) is both simply laced and triangle free. This thesis will focus primarily on Coxeter
systems of type Λ.

Example 2.1. The Coxeter graphs given in Figure 2.1 correspond to four common simply-
laced Coxeter systems. The defining relations for the Coxeter systems are determined by
the corresponding graphs. The Coxeter system of type An is given by the Coxeter graph in
Figure 2.1(a). The Coxeter group W (An) has generating set S(An) = {s1, s2, . . . , sn} and
has defining relations

● s2i = e for all i;

● sisj = sjsi when ∣i − j∣ > 1;

● sisjsi = sjsisj when ∣i − j∣ = 1.

The Coxeter group W (An) is isomorphic to the symmetric group Sn+1 under the mapping
that sends si to the adjacent transposition (i, i + 1).

The Coxeter system of type Dn is given by the Coxeter graph in Figure 2.1(b). The
Coxeter group W (Dn) has generating set S(Dn) = {s1, s2, . . . , sn} and has defining relations

● s2i = e for all i;

● sisj = sjsi if ∣i − j∣ > 1 and i, j ≠ 1;

● sisj = sjsi if i = 1 and j ≠ 3;

● s1s3s1 = s3s1s3 and sisjsi = sjsisj if ∣i − j∣ = 1.

The Coxeter group W (Dn) is isomorphic to the index two subgroup of the group of signed
permutations on n letters having an even number of sign changes.

It turns out that the Coxeter groups of types Ãn and D̃n are infinite. All of these Coxeter
systems are of type Λ except type Ã2 due to the Coxeter graph being a three-cycle.

Given a Coxeter system (W,S), let S∗ denote the free monoid on the alphabet S. An
element α = sx1sx2⋯sxm ∈ S∗ is called a word. A subword of α is a word of the form
sxi

sxi+1
⋯sxj−1

sxj
for 1 ≤ i ≤ j ≤ m. The word α = sx1sx2⋯sxm ∈ S∗ is an expression for w if

α is equal to w when considered as an element of the group W . If m is minimal among all
possible expressions for w, we say that α is a reduced expression for w, and we call ℓ(w) ∶=m,

12



s1 s2 s3
. . .
sn−1 sn

(a) An

s2 s3 s4
. . .
sn−1 sn

s1

(b) Dn

s1 s2 s3
. . .
sn−1 sn

sn+1

(c) Ãn

s2 s3 s5

s1

s4

(d) D̃4

Figure 2.1: Examples of common simply-laced Coxeter graphs.

the length of w. Note that any subword of a reduced expression is also reduced. We will
denote the set of all reduced expressions for w ∈W by R(w).

For the remainder of this thesis, if we are considering a particular labeling of a Coxeter
graph, we will often replace si with i for brevity.

The relationship between reduced expressions for a given group element is characterized
by the following theorem, called Matsumoto’s Theorem [9].

Proposition 2.2 (Matsumoto’s Theorem). In a Coxeter system (W,S), any two reduced
expressions for the same group element differ by a sequence of commutation and braid moves.

Following Matsumoto’s Theorem, we can visually represent the relationships among re-
duced expressions for a given element in a Coxeter group. For w ∈W , define the Matsumoto
graph G(w) to be the graph having vertex set equal to R(w), where two reduced expressions
α and β are connected by an edge if and only if α and β are related via a single commutation
or braid move. We will distinguish between commutation and braid moves by connecting
α and β with an orange edge if there is a commutation move between them and a blue
edge if there is a braid move between them. Matsumoto’s Theorem implies that G(w) is
connected. Bergeron, Ceballos, and Labbé [4] proved that for finite Coxeter groups, every
cycle in a Matsumoto graph has even length. Grinberg and Postnikov [10], extended this
result to arbitrary Coxeter systems. The following proposition is an immediate consequence
of these two facts.

Proposition 2.3. If (W,S) is a Coxeter system and w ∈W , then G(w) is bipartite.

Matsumoto’s Theorem allows us to define two different equivalence relations on the set
of reduced expressions for a given element of a Coxeter group. Let (W,S) be a Coxeter
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system and let w ∈ W . For α,β ∈ R(w), we define α ∼c β if we can obtain α from β by
applying a single commutation move of the form st ↦ ts, where m(s, t) = 2. We define the
equivalence relation ≈c by taking the reflexive and transitive closure of ∼c. Each equivalence
class under ≈c is called a commutation class, denoted [α]c for α ∈ R(w). Two reduced
expressions are said to be commutation equivalent if they are in the same commutation
class. Commutation classes have been studied extensively in the literature. In the Coxeter
system of type An, Elnitsky [7] showed that the set of commutation classes for a given w is
in one-to-one correspondence with the set of rhombic tilings of a certain polygon determined
by w. Bedard [3] developed recursive formulas to find the number of reduced expressions
in each commutation class while Meng [12] studied the number of commutation classes and
their relationship via braid moves.

Similarly, we define α ∼b β if we can obtain α from β by applying a single braid move.
The equivalence relation ≈b is defined by taking the reflexive and transitive closure of ∼b. Each
equivalence class under ≈b is called a braid class, denoted [α]b for α ∈ R(w). Two reduced
expressions are said to be braid equivalent if they are in the same braid class. Although
braid classes have not been studied as extensively in the literature as commutation classes,
braid classes have appeared in the work of Bergeron, et al. [4], among others. In the Coxeter
system of type An, Fishel et al. [8] provided upper and lower bounds on the number of
reduced expressions for a fixed permutation by studying the commutation classes and braid
classes in tandem. Also, in Coxeter systems of type An, Zollinger [16] provided formulas for
the cardinality of braid classes.

Example 2.4. Consider the expression α = 1321434 for some w in the Coxeter system of
type D4. It turns out that α is reduced so that ℓ(w) = 7. There are 15 reduced expressions
in R(w) and the corresponding Matsumoto graph is given in Figure 2.2. The edges of G(w)
show how pairs of reduced expressions are related via commutation or braid moves. The set
of 15 reduced expressions is partitioned into five commutation classes:

[1321434]c = {1321434,1324134,1342134,1341234,1314234,1312434}
[3123243]c = {3123243,3213243,3213423,3123423}
[3134234]c = {3134234,3132434}
[1321343]c = {1321343,1312343}
[3132343]c = {3132343}
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1341234

1342134

1324134

1321434

1312434

1314234

1321343 3134234

1312343 3132434

3132343

3123243

3213243 3123423

3213423

Figure 2.2: Example of a Matsumoto graph in the Coxeter system of type D4.

and nine braid classes:

[1312343]b = {1312343,1312434,3132434,3132343,3123243}
[1321343]b = {1321343,1321434}
[1314234]b = {1314234,3134234}
[1324134]b = {1324134}
[1342134]b = {1342134}
[1341234]b = {1341234}
[3213243]b = {3213243}
[3213423]b = {3213423}
[3123423]b = {3123423}

Notice that the braid classes of sizes 2 and 5 correspond to the vertices in the blue
connected components of the Matsumoto graph given in Figure 2.2 while the singleton braid
classes correspond to the six vertices that are not incident to any blue edges. A similar
structure holds for the commutation classes.

Since we will focus solely on braid classes for the remainder of this thesis, we will write
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[α] in place of [α]b. We can see the relationship among reduced expressions in a fixed braid
class by looking at the corresponding maximal blue connected components of the Matsumoto
graph. This leads to the following definition. Let α be a reduced expression for w ∈W , we
define the braid graph of α, denoted B(α), to be the graph with vertex set [α], where
α,β ∈ [α] are connected by an edge if and only if α and β are related via a single braid
move. Note that braid graphs are defined with respect to a fixed reduced expression (or
equivalence class) as opposed to the corresponding group element. Moreover, if α and β are
braid related, then B(α) = B(β).

Example 2.5. Below we describe three different braid classes and illustrate their corre-
sponding braid graphs, where we have used underlines and overlines to indicate where braid
moves may occur.

(a) In the Coxeter system of type A6, the expression 1213243565 is reduced. Its braid class
consists of the following reduced expressions:

α1 = 1213243565, α2 = 2123243565, α3 = 2132343565, α4 = 2132434565,

α5 = 1213243656, α6 = 2123243656, α7 = 2132343656, α8 = 2132434656.

(b) In the Coxeter system of type D4, the expression 4341232 is reduced and its braid class
consists of the following reduced expressions:

β1 = 4341232, β2 = 3431232, β3 = 4341323, β4 = 3431323, β5 = 3413123.

(c) In the Coxeter system of type D4, the expression 343132343 is reduced and its braid
class consists of the following reduced expressions:

γ1 = 343132343, γ2 = 341312343, γ3 = 434132343, γ4 = 343123243,

γ5 = 434123243, γ6 = 343132434, γ7 = 341312434, γ8 = 434132434.

The braid graphs B(α1),B(β1), and B(γ1) are depicted in Figures 2.3(a), 2.3(b), and 2.3(c),
respectively.

The next result follows immediately from Proposition 2.3.

Proposition 2.6. If (W,S) is a Coxeter system and α is a reduced expression for w ∈ W ,
then B(α) is a bipartite.
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γ6

γ7

γ8

(c)

Figure 2.3: Braid graphs generated by various reduced expressions.

We will now discuss more terminology that will allow us to introduce the notions of braid
shadow and link. Throughout the remainder of this chapter, we assume that (W,S) is a
simply-laced Coxeter system. This condition is necessary for a majority of the following
results, although the results likely generalize with the appropriate modifications.

If i, j ∈ N with i < j, then we define the interval Ji, jK ∶= {i, i + 1, . . . , j − 1, j}. We define
the degenerate interval Ji, iK to be the singleton set {i}. We will use the intervals Ji, jK to
represent positions in a reduced expression. If α = sx1sx2⋯sxm is a reduced expression for
w ∈W , we define the local support of α over Ji, jK via

suppJi,jK(α) ∶= {sxk
∣ k ∈ Ji, jK}.

The local support of the braid class [α] over Ji, jK is defined by

suppJi,jK([α]) ∶= ⋃
β∈[α]

suppJi,jK(β).

In other words, suppJi,jK(α) is the set consisting of the generators that appear in positions
i, i + 1, . . . , j of α while suppJi,jK([α]) is the set of generators that appear in positions i, i +
1, . . . , j of any reduced expression in [α]. In the case of the degenerate interval Ji, iK, we will
use the notation suppJiK(α) and suppJiK([α]), and we will simply write supp(α) for the set
of generators that appear in α. We will also let αJi,jK denote the subword sxi

sxi+1
⋯sxj−1

sxj

of α.
Following [2], if α = sx1sx2⋯sxm is a reduced expression for w ∈ W , then the interval

Ji, i + 2K is a braid shadow for α if sxi
= sxi+2

and m(sxi
, sxi+1

) = 3. The collection of braid
shadows for α is denoted by S(α) and the set of braid shadows for the braid class [α] is
given by

S([α]) ∶= ⋃
β∈[α]

S(β).

The cardinality of S([α]) is called the rank of α, which we denote by rank(α).
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In summary, a braid shadow for a reduced expression α refers to a location in α where we
can apply a braid move. A reduced expression may have many braid shadows, or none at all.
The set S(α) is the collection of the braid shadows for a specific α, while S([α]) captures
the braid shadows for all reduced expressions that are braid equivalent to α. If Ji, i+ 2K is a
braid shadow for [α], then we will refer to position i+1 in any reduced expression in [α] as
the center of the braid shadow.

Example 2.7. Consider the reduced expressions given in Example 2.5. We see that:

(a) S(α1) = {J1,3K, J8,10K} and S([α1]) = {J1,3K, J3,5K, J5,7K, J8,10K},

(b) S(β1) = {J1,3K, J5,7K} and S([β1]) = {J1,3K, J3,5K, J5,7K},

(c) S(γ1) = {J1,3K, J3,5K, J5,7K, J7,9K} and S([γ1]) = {J1,3K, J3,5K, J5,7K, J7,9K}.

If α is a reduced expression for w ∈ W , then a pair of braid shadows for α are either
disjoint or overlap by a single position. Section 2.1 of [8] states this explicitly for Coxeter
systems of type An. The following proposition from [2] implies the result for all simply-laced
Coxeter systems.

Proposition 2.8. Suppose (W,S) is a simply-laced Coxeter system. If α is a reduced
expression for w ∈W with Ji, i + 2K ∈ S([α]), then Ji + 1, i + 3K /∈ S([α]).

Reduced expressions with the property that there are no gaps between consecutive braid
shadows play a pivotal role. The previous result motivates the next definition. Let α =
sx1sx2⋯sxm be a reduced expression for some w in a simply-laced Coxeter system with m ≥ 1.
We define α to be a link if either m = 1 or m is odd and

S([α]) = {J1,3K, J3,5K, . . . , Jm − 4,m − 2K, Jm − 2,mK}.

If α is a link, then the corresponding braid class [α] is called a braid chain. Note that every
reduced expression in a braid chain is a link.

Example 2.9. Consider the reduced expressions given in Example 2.5. Since S([α1]) =
{J1,3K, J3,5K, J5,7K, J8,10K}, α1 is a not a link, and hence [α1] is not a braid chain. However,
it turns out that the subwords 1213243 and 565 of α1 are links in their own right. On the
other hand, since S([β1]) = {J1,3K, J3,5K, J5,7K}, it follows that β1 is a link and [β1] is a
braid chain. Lastly, since S([γ1]) = {J1,3K, J3,5K, J5,7K, J7,9K}, γ1 is a link and [γ1] is a
braid chain.

If α is a reduced expression for w ∈W with ℓ(w) ≥ 1, then we say that β is a link factor
of α provided that
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(a) β is a subword of α,

(b) β is a link, and

(c) for every subword γ of α, if β is a subword of γ and γ is a link, then β = γ.

It follows from this definition that every reduced expressionα for a nonidentity group element
can be written as a unique product of link factors, say α1α2⋯αk, where each αi is a link
factor of α. This product will be referred to as the link factorization of α. For emphasis,
we may denote the link factorization as α = α1 ∣ α2 ∣ ⋯ ∣ αk.

Using the link factorization of a reduced expression, every braid graph for a reduced
expression can be written as a box product of the braid graphs of the corresponding link
factors in the link factorization. The decomposition is unique if the ordering of the link
factors in respected. The following proposition is an immediate consequence of the previous
definitions and appeared in [2].

Proposition 2.10. Suppose (W,S) is a simply-laced Coxeter system. If α is a reduced
expression for w ∈W with link factorization α1 ∣ α2 ∣ ⋯ ∣ αk, then

(a) [α] = {β1 ∣ β2 ∣ ⋯ ∣ βk ∶ βi ∈ [αi] for 1 ≤ i ≤ k},

(b) The cardinality of the braid class for α is given by card([α]) =
k

∏
i=1

card([αi]),

(c) The rank of α is given by rank(α) =
k

∑
i=1

rank(αi),

(d) B(α) ≅ B(α1) ◻ B(α2) ◻⋯ ◻ B(αk).

Example 2.11. Consider the reduced expression α1 = 1213243565 given in Example 2.5.
The link factorization for α1 is 1213243 ∣ 565. The decomposition B(α1) ≅ B(1213243) ◻
B(565) is illustrated in Figure 2.4. We have utilized colors to help distinguish the link factors.

Example 2.12. Consider the reduced expression α = 21234356576 for a group element
in a Coxeter system of type A7. The link factorization for α is 212 ∣ 343 ∣ 56576. The
decomposition B(α) ≅ B(212) ◻ B(343) ◻ B(56576) is illustrated in Figure 2.5. Again, we
have utilized colors to help distinguish the link factors.
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Figure 2.4: Decomposition of the braid graph for the reduced expression in Example 2.11.

212

≅
343

◻

56576

◻
212 ∣343 ∣56576

Figure 2.5: Decomposition of the braid graph for the reduced expression in Example 2.12.
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Chapter 3

Local structure of links and braid
chains

The goal of this chapter is to provide descriptions of the local structure of links in Coxeter
systems of type Λ. We will begin by recalling several results from [2]. We will then introduce
new results regarding the local structure of links.

The first proposition, found in [2], tells us that in a Coxeter system of type Λ the support
of a braid shadow for a reduced expression is constant across the entire braid class.

Proposition 3.1. Suppose (W,S) is type Λ. Ifα and β are two braid equivalent links of rank
at least one, then for all J2i − 1,2i + 1K ∈ S(α) ∩ S(β), suppJ2i−1,2i+1K(α) = suppJ2i−1,2i+1K(β).

The previous result requires the assumption that the Coxeter system is triangle free. The
following example illustrates that without this assumption the result does not hold.

Example 3.2. Consider the Coxeter system of type Ã2, which is determined by the Cox-
eter graph in Figure 2.1(c). Given the reduced expression α = 1213121, it is clear that
β = 2123212 ∈ [α]. However, suppJ3,5K(α) = {1,3} while suppJ3,5K(β) = {2,3}. Hence Propo-
sition 3.1 does not necessarily hold if the Coxeter system is not triangle free.

The following proposition from [2] tells us that when a reduced expression has a braid
shadow, the support of that braid shadow completely determines the collection of generators
that can appear at the center of that braid shadow across the entire braid chain. Moreover,
if there are overlapping braid shadows in a reduced expression, the supports of the braid
shadows intersect at a single generator.

Proposition 3.3. Suppose (W,S) is type Λ. If α is a reduced expression for w ∈W , then
J2i−1,2i+1K ∈ S(α) if and only if J2i−1,2i+1K ∈ S([α]) and suppJ2i−1,2i+1K(α) = suppJ2iK([α]).
If J2i − 1,2i + 1K, J2i + 1,2i + 3K ∈ S([α]), then card(suppJ2iK([α]) ∩ suppJ2i+2K([α])) = 1.
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The previous proposition allows us to assume suppJ2iK([α]) = {s, t} whenever we have
J2i − 1,2i + 1K ∈ S(α) with suppJ2i−1,2i+1J(α) = {s, t}. Moreover, if we also have J2i + 1,2i +
3K ∈ S(α), then we can conclude that suppJ2i+2K([α]) = {t, u}. Note that in this situation
m(s, t) = 3, m(t, u) = 3, andm(s, u) = 2. These facts will be used frequently for the remainder
of this thesis and we may do so without explicitly mentioning the proposition.

The next four propositions from [2] provide explicit structure for braid shadows in a link
specifically. The first result tells us that for any two overlapping braid shadows, the support
of the common position has cardinality three.

Proposition 3.4. Suppose (W,S) is type Λ. If α is a link of rank r ≥ 2 such that
suppJ2iK([α]) = {s, t} and suppJ2i+2K([α]) = {t, u} for 1 ≤ i ≤ r − 1, then suppJ2i+1K([α]) =
{s, t, u}.

The next proposition tells us that the left and right ends of a link have a fairly rigid
structure.

Proposition 3.5. Suppose (W,S) is type Λ and let α be a link of rank at least two.

(a) If suppJ2K([α]) = {s, t}, then αJ1,2K = st or αJ1,2K = ts.

(b) If suppJ2rK([α]) = {s, t}, then αJ2r,2r+1K = st or αJ2r,2r+1K = ts.

Proposition 3.6. Suppose (W,S) is type Λ and let α = sx1sx2⋯sxm be a link of rank at
least 2 such that suppJ2iK([α]) = {s, t} and suppJ2i+2K([α]) = {t, u}. If sx2i

∈ {s, t} and
sx2i+2

∈ {t, u} ∖ {sx2i
}, then sx2i+1

∈ {s, t, u} ∖ {sx2i
, sx2i+2

}.

One consequence of Proposition 3.6 is that for any two overlapping braid shadows in a
braid chain [α], there are three possible forms that αJ2i−1,2i+3K may take:

(a) ⋯ ?

2i−1

s

2i

u

2i+1

t

2i+2

?

2i+3
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

(b) ⋯ ?

2i−1

s

2i

t

2i+1

u

2i+2

?

2i+3
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

(c) ⋯ ?

2i−1

t

2i

s

2i+1

u

2i+2

?

2i+3
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α
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where m(s, t) = 3, m(t, u) = 3, and m(s, u) = 2. We have highlighted in orange the generators
in the center of each braid shadow in [α] to aid the reader. We will continue to do this for
the remainder of this chapter. Note that position 2i + 1 is the position where the two braid
shadows in [α] overlap. It is important to note that the form

⋯ ?

2i−1

t

2i

?

2i+1

t

2i+2

?

2i+3
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

is not possible since Proposition 3.6 tells us suppJ2i+1K = {s, t, u} ∖ {t} = {s, u}, but either
generator will cause a braid shadow in positions J2i,2i+ 2K since m(s, t) = 3 and m(t, u) = 3,
which is not possible by Proposition 2.8.

The following proposition concludes that every link is uniquely determined by the gen-
erators appearing in the even positions of the reduced expression.

Proposition 3.7. Suppose (W,S) is type Λ and let α = sx1sx2⋯sx2r+1 and β = sy1sy2⋯sy2r+1
be two braid equivalent links of rank r. Then α = β if and only if sx2j

= sy2j for all 1 ≤ j ≤ r.

Since the previous result is so significant, we developed the following definition. If (W,S)
is type Λ and α = sx1⋯sx2r+1 is a link of rank r, the signature of α, denoted sig(α), is
the ordered list of generators appearing in the even positions of α. That is, sig(α) =
(sx2 , sx4 , . . . , sx2r). We will use sigi(α) to represent the ith position of sig(α). Note that
the ith position of the signature corresponds to the ith braid shadow in [α]. We define
∆(sig(α), sig(β)) to be the number of entries that differ between the signatures of α and
β.

This allows us to restate Proposition 3.7 as follows.

Proposition 3.8. Suppose (W,S) is type Λ and let α and β be two braid equivalent links.
Then α = β if and only if sig(α) = sig(β).

The above results provide a lot of information regarding which generators can be in which
positions across a braid chain. For the remainder of this chapter, we focus our attention on
the local structure of links.

The following series of propositions can be viewed as a strengthening of Propositions 3.1,
3.3, 3.5, and 3.6, where we provide precise information about what generators appear in
the odd positions of a link based on the relations of the corresponding generators and what
generators appear in the even positions. The next result follows immediately from Proposi-
tions 3.5 and 3.6.

Proposition 3.9. Suppose (W,S) is type Λ and let α be a link with rank(α) = 1. If
suppJ2K([α]) = {s, t}, then α = sts or α = tst.
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s t u

Figure 3.1: Induced subgraphs of the Coxeter graph for Propositions 3.10 and 3.11.

Proposition 3.10. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 2. If
suppJ2K([α]) = {s, t} and suppJ4K([α]) = {t, u}, where the relationships among s, t, and u are
depicted in Figure 3.1, then αJ1,4K is equal to one of the following:
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⋯
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(c)
s

1

t
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u

4
⋯
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α

Proof. By Proposition 3.6, there are three possibilities to consider for αJ2,4K. In each case,
there is a unique choice for which generator appears in the first position according to Propo-
sitions 3.5. Thus we obtain the three forms for αJ1,4K. ◻

The following result is the right-handed version of Proposition 3.10.

Proposition 3.11. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 2. If
suppJ2r−2K([α]) = {t, u} and suppJ2rK([α]) = {s, t}, where the relationships among s, t, and u
are depicted in Figure 3.1, then αJ2r−2,2r+1K is equal to one of the following:

(a) ⋯ t

2r−2

u

2r−1

s

2r

t

2r+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

(b) ⋯ u
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t
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s
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t

2r+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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(c) ⋯ u

2r−2

s

2r−1

t

2r

s

2r+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

Proof. This follows from a symmetric argument to the proof of Proposition 3.10. ◻
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The next result follows immediately from the previous results together with Proposi-
tion 3.5.

Corollary 3.12. If rank(α) = 2, suppJ2K([α]) = {s, t}, and suppJ4K([α]) = {t, u}, where the
relationships among s, t, u are depicted in Figure 3.1, then α is equal to one of the following:
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In what follows, we will use a dashed line in a Coxeter graph to denote an edge that may
or may not be present.

v s t u

(a)

s t u

v

(b)

Figure 3.2: Induced subgraphs of the Coxeter graphs for Propositions 3.13 and 3.14.

Proposition 3.13. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 5. If J2i−
3,2i−1K is not the leftmost braid shadow and J2i+1,2i+3K is not the rightmost braid shadow in
S([α]) such that suppJ2i−2K([α]) = {s, v}, suppJ2iK([α]) = {s, t}, and suppJ2i+2K([α]) = {t, u},
where the relationships among v, s, t, u are depicted in Figure 3.2(a), then αJ2i−2,2i+2K is equal
to one of the following:

(a) ⋯ v

2i−2

t

2i−1

s

2i

u

2i+1

t

2i+2
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ

(b) ⋯ v

2i−2

t

2i−1

s

2i

t

2i+1

u

2i+2
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ

25



(c) ⋯ s

2i−2

v

2i−1

t

2i

s

2i+1

u

2i+2
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ

(d) ⋯ v

2i−2

s

2i−1

t

2i

s

2i+1

u

2i+2
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

Proof. Based on the consequence of Proposition 3.6, we have three possibilities for αJ2i,2i+2K.
In each case, we consider all possibilities for αJ2i−2K and then apply Proposition 3.6 to obtain
the generators in position 2i − 1. We see that
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◻

The proof for following proposition will use a similar approach to the proof of Proposi-
tion 3.13.

Proposition 3.14. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 5. If J2i−
3,2i−1K is not the leftmost braid shadow and J2i+1,2i+3K is not the rightmost braid shadow in
S([α]) such that suppJ2i−2K([α]) = {v, t}, suppJ2iK([α]) = {s, t}, and suppJ2i+2K([α]) = {t, u},
where the relationships among v, s, t, u are depicted in Figure 3.2(b), then αJ2i−2,2i+2K is equal
to one of the following:
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Proof. As in the previous proof, based on the consequence of Proposition 3.6, we have three
possibilities for αJ2i,2i+2K. In each case, we consider all available possibilities for αJ2i−2K and
then apply Proposition 3.6 to obtain the generators in position 2i − 1. We see that
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◻

In summary, Proposition 3.9 and Corollary 3.12 tell us precisely what links of rank
one and two look like. Also, Propositions 3.10 and 3.11 indicate the structure of the four
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leftmost and rightmost positions of a link, respectively. Propositions 3.13 and 3.14 indicate
the structure of the middle five positions in a link in the location of three overlapping braid
shadows for a braid chain. An immediate consequence of Propositions 3.9–3.14 is that if α
is a link, then there are four possibilities for the subwords appearing in a braid shadow for
[α]. We state this precisely in the following corollary.

Corollary 3.15. Suppose (W,S) is type Λ. If α is a link of rank at least 1, then αJ2i−1,2i+1K

is equal to one of the following:

(a) sts, where m(s, t) = 3;

(b) sut, where m(s, u) = 2, m(u, t) = 3, and m(s, t) = 3;

(c) tsu, where m(s, t) = 3, m(s, u) = 2, and m(t, u) = 3;

(d) vsu, where m(v, s) = 2, m(s, u) = 2, and m(v, u) = 2.

v s t u w

(a)

v s t u w

(b)

v s t u

w

(c)

s t u

v

w

(d)

s t u

v

w

(e)

Figure 3.3: Induced subgraphs of the Coxeter graphs for Propositions 3.16–3.19.

In light of Proposition 3.14, the fourth type in Corollary 3.15 can only occur if the
corresponding generators come from a Coxeter system whose Coxeter graph contains the
Coxeter graph of type D4 as a subgraph.

We can expand on Propositions 3.13 and 3.14 to find the possible configurations of
two overlapping braid shadows in a link. We will need five generators in order to extend
the previous lemmas, so we will reference Figure 3.3, which depicts the possible induced
subgraphs of Coxeter graphs that describe the relationships among the relevant generators.
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Proposition 3.16. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 4. If
J2i− 3,2i− 1K is not the leftmost braid shadow and J2i+ 1,2i+ 3K is not the rightmost braid
shadow in S([α]) such that suppJ2i−2K([α]) = {v, t}, suppJ2iK([α]) = {s, t}, suppJ2i+2K([α]) =
{t, u}, and suppJ2i+4K([α]) = {u,w}, where the relationships among v, s, t, u,w are depicted
in Figures 3.3(a) and 3.3(b), then the overlapping braid shadows in positions J2i − 1,2i + 1K
and J2i + 1,2i + 3K are equal to one of the following:
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Proof. We use the results from Proposition 3.13 for our case analysis.
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◻

Proposition 3.17. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 4. If
J2i− 3,2i− 1K is not the leftmost braid shadow and J2i+ 1,2i+ 3K is not the rightmost braid
shadow in S([α]) such that suppJ2i−2K([α]) = {v, t}, suppJ2iK([α]) = {s, t}, suppJ2i+2K([α]) =
{t, u}, and suppJ2i+4K([α]) = {t,w}, where the relationships among v, s, t, u,w are depicted in
Figure 3.3(c), then the overlapping braid shadows in positions J2i−1,2i+1K and J2i+1,2i+3K
are equal to one of the following:
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Proof. We use the results from Proposition 3.13 for our case analysis, and once again utilize
Proposition 3.6.
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◻

Proposition 3.18. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 4. If
J2i− 3,2i− 1K is not the leftmost braid shadow and J2i+ 1,2i+ 3K is not the rightmost braid
shadow in S([α]) such that suppJ2i−2K([α]) = {v, t}, suppJ2iK([α]) = {s, t}, suppJ2i+2K([α]) =
{t, u}, and suppJ2i+4K([α]) = {u,w}, where the relationships among v, s, t, u,w are depicted in
Figure 3.3(d), then the overlapping braid shadows in positions J2i−1,2i+1K and J2i+1,2i+3K
are equal to one of the following:
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Proof. We use the results from Proposition 3.14 for our case analysis, and then apply Propo-
sition 3.6.
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◻

Proposition 3.19. Suppose (W,S) is type Λ and let α be a link with rank(α) ≥ 4. If
J2i− 3,2i− 1K is not the leftmost braid shadow and J2i+ 1,2i+ 3K is not the rightmost braid
shadow in S([α]) such that suppJ2i−2K([α]) = {v, t}, suppJ2iK([α]) = {s, t}, suppJ2i+2K([α]) =
{t, u}, and suppJ2i+4K([α]) = {t,w}, where the relationships among v, s, t, u,w are depicted in
Figure 3.3(e), then the overlapping braid shadows in positions J2i−1,2i+1K and J2i+1,2i+3K
are equal to one of the following:
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Proof. As in the previous proofs, we use the results from Proposition 3.14 for our case
analysis, and again apply Proposition 3.6.
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◻

The following corollary is an immediate consequence of the previous propositions. Notice
that this result is referring to braid shadows in α as opposed to [α].

Corollary 3.20. Suppose (W,S) is type Λ and let α be a link of rank at least two. If
J2i − 1,2i + 1K, J2i + 1,2i + 3K are elements of S(α), then αJ2i−1,2i+3K = tstut, where the
relationship among s, t, u is depicted in Figure 3.1.

34



To summarize, Corollary 3.15 tells us the possible forms a link can have in the location
of a braid shadow in a braid chain. Propositions 3.16–3.19 indicate the structure of a link in
the location of any two overlapping braid shadows that occur in the middle of a braid chain.
Taken together, the results of this chapter completely characterize the local structure of a
link.
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Chapter 4

Structure of braid graphs

The goal of this chapter is to provide an alternative proof that braid graphs for links in
Coxeter systems of type Λ are partial cubes (see Proposition 4.4), as well as to provide
evidence that braid graphs are median and correspond to the underlying graph of the Hasse
diagram for a distributive lattice.

Let α and β be two braid equivalent reduced expressions in a Coxeter system of type Λ.
If α and β are related via a single braid move, then this braid move occurred in a specific
braid shadow. In this case, we can label the edge connecting α and β in B(α) with j, where
J2j − 1,2j + 1K is the corresponding braid shadow. We will write bj(α) = β to represent
that applying the braid move in the jth shadow of α yields β. We may denote a minimal
sequence of braid moves from α to β via bj11 , b

j2
2 , ..., b

jk
k , where bjii is the ith braid move and

this move occurs in the jith braid shadow, namely positions J2ji − 1,2ji + 1K. Note that a
minimal braid sequence corresponds to the optimal path from α to β in B(α) along the
edges labeled with j1, j2, . . . , jk.

Theorem 4.1. Suppose (W,S) is type Λ and let α and β be two braid equivalent links of
rank at least one. If bj11 , b

j2
2 , ..., b

jk
k is a minimal braid sequence from α to β, then each ji

appears exactly once.

Proof. For sake of a contradiction assume there exists α,β ∈ R(w) such that there exists a
minimal braid sequence bj11 , b

j2
2 , ..., b

jk
k from α to β where ji = ji∗ for some i ≠ i∗. If such a

pair exists, we may assume there exists α and β together with a minimal braid sequence
bj11 , b

j2
2 , ..., b

jk
k such that j1 = jk and this is the only repeated braid shadow in the sequence.

Choose α and β such that k is minimal among all such pairs.
There are two situations we must consider. First suppose j1 and j2 are disjoint braid

shadows. Certainly, bj11 and bj22 can be applied in either order, so that both bj11 , b
j2
2 ,⋯, b

j1
k and

bj22 , b
j1
1 ,⋯, b

j1
k yield β. This contradicts the minimality of k.
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Now suppose j1 and j2 are overlapping braid shadows. Note that j1 corresponds to the
braid shadow in positions J2j1 − 1,2j1 + 1K. Without loss of generality, let j2 correspond to
the braid shadow in positions J2j1 + 1,2j1 + 3K. By Corollary 3.20, it must be the case that
bj11 (α)J2j1−1,2j1+3K = tstut, where the relationships among s, t, u are depicted in Figure 3.1.
This implies that αJ2j1−1,2j1+3K = stsut. Since j1 and j2 are braid shadows that are distinct

from j3, . . . , jk−1, as we continue to apply braid moves bj33 , ..., b
jk−1
k−1 , we will not change positions

2j1,2j1 + 1, and 2j1 + 2. But by assumption, we should apply bj1k as our final braid move.
However, a braid move will not be available to apply in braid shadow j1 on the final step.
This is a contradiction since the braid shadow j1 was the only repeated braid shadow in the
sequence. ◻

It follows from Theorem 4.1 that if α is a link of rank r, then diam(B(α)) ≤ r. This also
follows from the fact that B(α) may be isometrically embedded in Qr (see Proposition 4.4).
The following theorem states that every minimal braid sequence from α to β uses the same
set of braid shadows.

Theorem 4.2. Suppose (W,S) is type Λ and let α and β be two braid equivalent links. If
bj11 , b

j2
2 , . . . , b

jk
k and bl11 , b

l2
2 , . . . , b

lk
k are minimal braid sequences from α to β, then {j1, ..., jk} =

{l1, ..., lk}.

Proof. Assume bj11 , b
j2
2 , . . . , b

jk
k and bl11 , b

l2
2 , . . . , b

lk
k are minimal braid sequences from α to β.

Let ji ∈ {j1, . . . , jk}. By Proposition 3.3, there exists s, t ∈ S with m(s, t) = 3 such that
suppJ2jiK([α]) = {s, t}. Without loss of generality, assume αJ2jiK = s. By Theorem 4.1, we
have sig2ji(α) ≠ sig2ji(β). Then it must be the case that there exists 1 ≤ m ≤ k such that
lm = ji. We can conclude that {j1, ...jk} = {li, ..., lk}. ◻

It follows from the previous theorems that every shortest path between a fixed pair of
vertices in a braid graph utilizes edges with the same collection of labels, and moreover
each label in this collection occurs exactly once. The next result follows from Theorems 4.1
and 4.2.

Corollary 4.3. If (W,S) is type Λ and α and β are two braid equivalent links, then
d(α,β) =∆(sig(α), sig(β)).

In light of Proposition 3.7, we can define the following. Assume that (W,S) is a Coxeter
system of type Λ and let α be a link with rank r ≥ 1. Define Φα ∶ [α] → {0,1}r via
Φα(β) = a1a2⋯ar, where

ak =
⎧⎪⎪⎨⎪⎪⎩

0, sigk(β) = sigk(α)
1, otherwise.
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Note that the definition of the map Φα above depends on the representative α. Choosing
a different representative will necessarily result in a different mapping, however any two such
embeddings differ only by an automorphism of the hypercube [2].

The following proposition is one of the main results from [2]. Later, we will provide an
alternate proof of this fact.

Proposition 4.4. Suppose (W,S) is type Λ and let α be a link of rank r ≥ 1, then the map
Φα is an isometric embedding of B(α) into Qr. In particular, the braid graph for a link is
a partial cube and dimI(B(α)) ≤ r.

Example 4.5. Consider the reduced expressions β1, . . . ,β5 given in Example 2.5. The
braid graph B(β1) was shown in Figure 2.3(c). We know β1 is a link by Example 2.9 and
rank(β1) = 3. By Proposition 4.4, there are at least five distinct embeddings of B(β1) into
Q3, one for each representative of [β1]. One possible embedding of β4 is shown in Figure 4.1.
It is easily seen that dimI(B(β1)) = 3 = rank(β1).

β4

β5

β3 β2

β1

101 011

111

000

100 010001

110Φβ4

Figure 4.1: An induced embedding of B(β4) into Q3 as in Example 4.5.

The next result follows from Proposition 4.4 together with Propositions 1.7 and 2.10 and
also appeared in [2].

Proposition 4.6. If (W,S) is type Λ and α is a reduced expression with link factorization
α = α1 ∣ α2 ∣ ⋯ ∣ αk, then B(α) is a partial cube such that

dimI(B(α)) ≤
k

∑
i=1

rank(αi).

In [2], the authors conjecture that if α is a link in a Coxeter system of type Λ, then
dimI(B(α)) = rank(α). The following theorem leads to an alternate proof of Proposition 4.4.
One consequence of our approach is that it verifies that the isometric dimension of B(α) is
equal to the rank of α.
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First define sigi(α) ∶= {x ∣ sigi(x) = sigi(α)}. That is, sigi(α) is the set of reduced
expressions that are braid equivalent to α and have signatures that agree with α in the ith
entry.

Theorem 4.7. Suppose (W,S) is type Λ and α is a link of rank at least one. If {α,β} is
an edge in B(α), then there exists a unique i such that sigi(α) ≠ sigi(β) and Wαβ = sigi(α).

Proof. Let α be a link of rank r ≥ 1 and let edge {α,β} in B(α). By Corollary 4.3, there
exists a unique i such that sigi(α) ≠ sigi(β). Now, we will show that Wαβ = sigi(α).

For the forward containment, suppose x ∈ Wαβ. Then d(x,α) < d(x,β). This implies
that ∆(sig(x), sig(α)) < ∆(sig(x), sig(β)) by Corollary 4.3. For sake of a contradiction,
suppose sigi(x) ≠ sigi(α). This implies that sigi(x) = sigi(β). Again by Corollary 4.3
d(x,β) = ∆(sig(x), sig(β)) while d(x,α) = ∆(sig(x), sig(α)) = ∆(sig(x), sig(β)) + 1 =
d(x,β) + 1. Then d(x,β) < d(x,α), which is a contradiction. Hence sigi(x) = sigi(α) and
Wαβ ⊆ sigi(α).

For the reverse containment, suppose x ∈ sigi(α). Then d(x,α) = ∆(sig(x), sig(α))
while d(x,β) = ∆(sig(x), sig(β)) = ∆(sig(x), sig(α)) + 1 = d(x,α) + 1. This implies that
d(x,α) < d(x,β) and hence x ∈Wαβ. Thus sigi(α) ⊆Wαβ.

Therefore Wαβ = sigi(α). ◻

If follows from Theorem 4.7 that if {α,β} is an edge in B(α) with sigi(α) ≠ sigi(β),
then all of the edges that join the semicubes Wαβ and Wβα correspond to the braid move
involving the ith braid shadow. That is, Fαβ is the set of all edges labeled by i. So certainly
θ is transitive and thus an equivalence relation.

Example 4.8. Consider the link α = 343123243 in the Coxeter system of type D4 and let
β = 343132343. Notice that α and β are related by a single braid move in the third braid
shadow in [α]. The semicubes Wαβ and Wβα have been highlighted in orange and magenta,
respectively, in Figure 4.2. We see that

sig3(α) = {343123243,434123243}

while

sig3(β) = {343132343,434132343,434132434,343132434,341312434,341312343}.

As we expected from Theorem 4.7, sig3(α) =Wαβ and sig3(β) =Wβα. We have highlighted
the third signature position in each reduced expression in orange and magenta, respectively,
to aid the reader.
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β = 343132343

341312343

434132343 α = 343123243

434123243

343132434

341312434

434132434

Figure 4.2: Example of Theorem 4.7 for a link in a Coxeter system of type D4.

Recall from Proposition 2.6 that B(α) is bipartite. Therefore by Proposition 1.11, B(α)
is a partial cube. This provides an alternate proof of Proposition 4.4. One consequence
of our alternate proof is that the isometric dimension of B(α) is equal to the number of
equivalence classes of edges. This yields the following corollary, which settles the conjecture
about the isometric dimension of B(α) from [2].

Corollary 4.9. If (W,S) is type Λ and α is a link, then B(α) is a partial cube with
dimI(B(α)) = rank(α).

The next result follows from the previous corollary together with Propositions 1.7 and 2.10.

Corollary 4.10. If (W,S) is type Λ and α is a reduced expression with link factorization
α1 ∣ α2 ∣ ⋯ ∣ αk, then B(α) is a partial cube with

dimI(B(α)) =
k

∑
i=1

rank(αi).

We make the following conjecture regarding the diameter of a braid graph for a link.

Conjecture 4.11. If (W,S) is type Λ and α is a link, then diam(B(α)) = rank(α).

If the conjecture is true, then we would have the following.

(1) If α is a reduced expression with link factorization α1 ∣ α2 ∣ ⋯ ∣ αk, then

diam(B(α)) =
k

∑
i=1

rank(αi).

(2) There exists reduced expressions µ,γ ∈ [α] such that µ and γ are diametrical.1

1Dana: Of course there is a pair that are diametrical. The uniqueness claim below is what matters.
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In fact, we conjecture that the pair µ and γ are unique.

Conjecture 4.12. If (W,S) is type Λ and α is a link, then there exists a unique pair
µ,γ ∈ [α] such that µ and γ are diametrical.

The previous conjecture is certainly not true if α is not a link. For example, see Fig-
ure 4.3(a).

Example 4.13. The graph in Figure 4.3(a) is the braid graph for the link α = 343132343
in the Coxeter system of type D4 while the graph in Figure 4.3(b) is the braid graph for
the reduced expression β = 3132343676 in the Coxeter system of type D7. We see that
rank(α) = 4. Notice that there is a unique pair that determines the diameter in B(α). On
the other hand, the link factorization of β is given by 3132343 ∣ 676, so rank(β) = 3+1 = 4 by
Proposition 2.10. In both graphs, the diameter agrees with the rank. We have highlighted
paths that yield the diameter in magenta in Figure 4.3.

(a) (b)

Figure 4.3: Examples of braid graphs where diameter equals rank of the reduced expression.

Now we turn our attention towards intervals in braid graphs. The following definition is
required for the next result. We define

sig(α,β) ∶= {x ∈ [α] ∣ sigi(x) = sigi(α) whenever sigi(α) = sigi(β)}.

That is, sig(α,β) is the set of reduced expressions whose signature equals the signature of
α in the ith entry when the signatures of α and β are equal in the ith entry.

Theorem 4.14. If (W,S) is type Λ and α and β are braid equivalent links, then I(α,β) =
sig(α,β).
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Proof. Let α and β be braid equivalent links. It is clear from Theorem 4.2 that I(α,β) ⊆
sig(α,β) since every edge on a shortest path between α and β corresponds to changing a
single signature entry that differs between α and β into a matching generator and every
shortest path between α and β must use the same set of braid shadows. For the reverse
containment, suppose x ∈ sig(α,β). Then sigi(x) = sigi(α) whenever sigi(α) = sigi(β).
We know there exists an optimal path from α to x consisting of ∆(sig(α), sig(x)) many
edges and there exists an optimal path from x to β consisting of ∆(sig(x), sig(β)) many
edges by Corollary 4.3. So, there exists a path from α to β passing through x consist-
ing of ∆(sig(α), sig(x)) + ∆(sig(x), sig(β)) many edges. Certainly, ∆(sig(α), sig(x)) +
∆(sig(x), sig(β)) ≥ ∆(sig(α), sig(β)). We must show this path is optimal by showing
∆(sig(α), sig(x)) +∆(sig(x), sig(β)) =∆(sig(α), sig(β)).

On each step from α to x, one position in the signature of α that differs from the
signature of β will change to match the signature of β. There are only two options for
the generators in each position of the signature from Proposition 3.3, so each edge from α
towards x will change a position in the signature of the current reduced expression to match
the signature of β. Since x ∈ sig(α,β), the edges from α to x will only change the positions
in the signature where α and x differ, so these edges will not affect the positions in the
signature of x that differ from the signature of β while agreeing with the signature of α.
Similarly, on each step from x to β, one position in the signature of the current reduced
expression will change to match a position in the signature of β. Since sigi(x) = sigi(α)
whenever sigi(α) = sigi(β), the optimal paths from α to β do not share edges with the same
label. So, ∆(sig(α), sig(x)) +∆(sig(x), sig(β)) =∆(sig(α), sig(β)). Thus x ∈ I(α,β). ◻

The previous theorem tells us that the reduced expressions on any shortest path between
α and β also share the same signature positions2 that α and β share. To expand on this
result we introduce the following terminology.

Let α,β, and σ be braid equivalent links of rank r ≥ 1. We define the ith majority of
α,β,σ via

maji(α,β,σ) ∶=
⎧⎪⎪⎨⎪⎪⎩

sigi(α), if sigi(α) = sigi(β) or sigi(α) = sigi(σ)
sigi(β), otherwise.

That is, the ith majority of a triple of braid equivalent links is the generator shared by at
least two of the signatures in the ith position. Next we define the majority of α,β,σ via

maj(α,β,σ) ∶= (maj1(α,β,σ), . . . ,majr(α,β,σ)).

This results in an ordered list of generators.

2Dana: I don’t think the wording of this is quite right.
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Proposition 4.15. Suppose (W,S) is type Λ. If α,β, and σ are braid equivalent links,
then med(α,β,σ) = {x3 ∣ sigi(x) =maji(α,β,σ)}.

Proof. Let α,β, and σ be braid equivalent links. Recall that

med(α,β,σ) = I(α,β) ∩ I(β,σ) ∩ I(σ,α).

By Theorem 4.14, we have

med(α,β,σ) = sig(α,β) ∩ sig(β,σ) ∩ sig(σ,α).

This intersection represents the set of reduced expressions x that satisfy sigi(x) = sigi(α)
whenever sigi(α) = sigi(β), sigi(x) = sigi(β) whenever sigi(β) = sigi(σ), and sigi(x) =
sigi(σ) whenever sigi(σ) = sigi(α). It follows that

med(α,β,σ) = {x ∣ sigi(x) =maji(α,β,σ)},

as expected. ◻

We conjecture the following.

Conjecture 4.16. If (W,S) is type Λ, then for braid equivalent links α,β, and σ, there
exists µ ∈ [α] such that sig(µ) =maj(α,β,σ).

If this conjecture is true, then for braid equivalent links α,β, and σ, med(α,β,σ) is the
link µ mentioned in Conjecture 4.16. That is, if Conjecture 4.16 is true, it would imply that
for a link α, the braid graph B(α) is median.

Conjecture 4.17. If (W,S) is type Λ and α is a link, then B(α) is median.

If B(α) is median for a link α, it follows from Propositions 1.18 that the braid graph for
any reduced expression is also median.

We outline a potential argument to prove Conjecture 4.16. Since maji(α,β,σ) results in
a single generator for each position i of the signature, by Proposition 4.15, med(α,β,σ)
will either be the empty set or contain a single element of [α] by Proposition 3.8. If
med(α,β,σ) ≠ ∅ (i.e., Conjecture 4.16), then B(α) is median.

Example 4.18. Consider the link α = 343132343 in the Coxeter system of type D4 whose
braid graph is shown in Figure 4.4(a). We know by Example 1.15 that B(α) is median.

3Dana: I think this should be x ∈ [α]. Also, did we define med???
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Example 4.19. In Figure 4.4(b), we see the braid graph for the link β = 34313243413 in Cox-
eter system of typeD4. Given the reduced expressionsα = 34312324131 and σ = 34131234131
in [β], we can compute med(α,β,σ) via Proposition 4.15. We see that maj(α,β,σ) =
(4,1,2,4,3), which corresponds to the signature of µ = 34313234131 in [β]. This is in agree-
ment with Conjecture 4.16. Moreover, B(α) is median. We have colored the signatures
of each reduced expression in the figure to aid the reader. We have also highlighted the
intervals I(α,β), I(β,σ), and I(σ,α) in blue, green, and red, respectively, to depict the
interval definition for med(α,β,σ) and we see that med(α,β,σ) = {µ}.

343132343

(a)

µ = 34313234131

β = 34313243413

σ = 34131234131

α = 34312324131

(b)

Figure 4.4: Examples of median braid graphs.

We now move on to constructing a poset whose Hasse diagram has B(α) as its underlying
graph. Let α be a link of rank r ≥ 1. By Theorem 4.1, diam(B(α)) ≤ r. Identify a pair
of vertices µ and γ of B(α) such that d(µ,γ) = diam(B(α)). Note that by Corollary 4.3
d(µ,γ) = ∆(sig(µ), sig(γ)), so diam(B(α)) = ∆(sig(µ), sig(γ)). Elect µ to be the desig-
nated smallest vertex and define β ⋖ σ if there exists a unique i such that sigi(β) ≠ sigi(σ)
and ∆(sig(µ), sig(β))+1 =∆(sig(µ), sig(σ)). Take ([α],≤) to be the partial order induced
by these covering relations. It is important to point out that the poset depends on the choice
of µ. We will refer to both the poset and the Hasse diagram as P(µ). It is easily seen that
this relation is reflexive, antisymmetric, and transitive.

Certainly, if β ⋖ σ in P(µ), then β and σ are adjacent in B(α). Next we argue that
if β and σ are adjacent in B(α), then either β ⋖ σ or σ ⋖ β. Suppose there exists an
edge βσ labeled i in B(α). This implies that sigi(β) ≠ sigi(σ) and this is the only position
of the signatures that differ. Then either sigi(β) = sigi(µ) or sigi(σ) = sigi(µ). Without
loss of generality, assume sigi(β) = sigi(µ). Then there exists an optimal path from µ to
σ that passes through β on the second to last step. So, we have ∆(sig(µ), sig(β)) + 1 =
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∆(sig(µ), (σ)) and hence β ⋖ σ. It follows that B(α) is the underlying graph for the Hasse
diagram of P(µ). This yields the following result.

Theorem 4.20. Suppose (W,S) is type Λ and α is a link of rank r. Let µ in [α] be
the designated smallest vertex. Then P(µ) is ranked by ∆(sig(µ), sig(β)) for β in [α].
Moreover, B(α) is the underlying graph for the Hasse diagram of P(µ).

Example 4.21. Consider the link α = 3132343 with rank(α) = 3 in the Coxeter system of
typeD4. The braid graphs B(α) is depicted in Figure 4.5. It is easily seen that diam(B(α)) =
3 and we can take µ = 3123243 to be the designated vertex. Then the graph given in
Figure 4.5 is also the underlying graph of the Hasse diagram for P(µ). Note that we could
have also taken µ to be 1312434, which would have resulted in an upside-down version of
the graph in Figure 4.5 for the Hasse diagram of P(µ).

α = 3132343

µ = 3123243

1312343 3132434

1312434

Figure 4.5: The Hasse diagram for P(µ) in Example 4.21.

We conjecture the following.

Conjecture 4.22. If (W,S) is type Λ and α is a link of rank r, then B(α) is the underlying
graph for the Hasse diagram of a distributive lattice.

We provide a few additional conjectures that may be useful in an attempt to prove
Conjecture 4.22.

Conjecture 4.23. Suppose (W,S) is type Λ and α is a link of rank r ≥ 1. Choose µ to
be the designated vertex of P(µ). If sigi(α) = sigi(µ), then there exists β ∈ [α] such that
α ⋖ β.

Conjecture 4.23 states that we can always “go up” in the poset from an element that has
at least one signature entry that agrees with the signature of µ.

If this conjecture is true, we would know the element γ that when paired with µ yields the
diameter of B(α) would be the unique maximum element of P(µ). In particular we would
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have, diam(B(α)) =∆(sig(µ), sig(γ)) = rank(α), which means that µ and γ are diametrical.
This result would settle Conjecture 4.11. On the other hand, if both Conjectures 4.17
and 4.23 are true, then Proposition 1.22 would imply Conjecture 4.22.

If there is a unique maximum element γ and unique minimum element µ, then another
approach is to show P(µ) is closed under meet and join and is isomorphic to a ring of
sets. First we will describe an algorithm to find the meet of two braid equivalent reduced
expressions in the poset. Let (W,S) be a Coxeter system of type Λ and α be a link of rank
r ≥ 1. Let β,σ ∈ [α]. To find β ∧ σ, first identify all positions in the signature such that
sigi(β) = sigi(σ). We will not change any of these positions. Next identify all positions in
the signature such that sigi(β) ≠ sigi(σ). Then either sigi(β) = sigi(µ) or sigi(σ) = sigi(µ),
so choose the generator in the differing position to match sigi(µ). Combining the positions
in the signature that were common between β and σ with the chosen generators matching
sig(µ), the result will be β ∧σ. The issue we have is whether or not β ∧σ is in [α].

We will follow a similar algorithm to find β∨σ. First identify all positions in the signature
such that sigi(β) = sigi(σ). We will not change any of these positions. Next identify all
positions in the signature such that sigi(β) ≠ sigi(σ). Then either sigi(β) = sigi(γ) in
that position or sigi(σ) = sigi(γ), so choose the generator in the differing position to match
sigi(γ). Combining the positions in the signature that were common between β and σ with
the chosen generators matching sig(γ), the result will be β ∨σ. Again, the issue we have is
whether or not β ∨σ is in [α].

If both β ∧ σ and β ∨ σ are in [α] and Conjecture 4.23 is true, then we are done. It
is likely that the techniques used to prove Conjecture 4.23 would be helpful in resolving
whether P(µ) is closed under meet and join.

Example 4.24. Consider the braid equivalent links α = 43412324313 and β = 34131234131
in a Coxeter system of type D4. We will follow the algorithms described above to find α∧β
and α ∨ β. To find α ∧ β, we see that sig4(α) = sig4(β) = 4, so we will keep this signature
position the same. Since sigi(α) ≠ sigi(β) for i ∈ {1,2,3,5}, we must choose the generators
in these positions so that they match sigi(µ). Then sig(α ∧ β) = (4,3,2,4,1), so we have
α ∧β = 34131234313 which does occur in [α].

Similarly, we will compute α∨β. We know that sig4(α) = sig4(β) = 4 so we will keep this
signature position the same. Since sigi(α) ≠ sigi(β) for i ∈ {1,2,3,5}, we must choose the
the generators in these positions so that they match sigi(γ). Then sig(α∨β) = (3,1,3,4,3),
so we have α ∨ β = 43412324131 = γ. We have highlighted the signatures of each reduced
expression in orange in Figure 4.6 to aid the reader.

If our poset is closed under unique meet and join, then P(µ) is a lattice. Lastly, we will
define a potential bijection between P(µ) and a certain ring of sets.

Assume α is a link of rank r ≥ 1 and µ is the designated smallest vertex. Let [r] =

46



α ∧β = 34131234313

µ = 34131243413

β = 34131234131

γ = 43412324131 = α ∨β

α = 43412324313

Figure 4.6: Example of meet and join for the two reduced expressions in Example 4.24.

{1,2, . . . , r}. Define f ∶ [α] → [r] via f(β) = {i ∣ sigi(β) ≠ sigi(µ)}. It is clear that β ⋖ σ
if and only if f(β) ⊆ f(σ). Therefore P(µ) is isomorphic to the image of f , which is
ordered by inclusion. If P(µ) is closed under meet and join, the image of f is a ring of
sets, and hence P(µ) would be isomorphic to a ring of sets. Proposition 1.23 (Birkhoff’s
Representation Theorem) would imply that P(µ) is a distributive lattice, which would then
imply Conjecture 4.22.

Example 4.25. Consider the link α = 343132343 in the Coxeter system of type D4. The
braid graph for α is given on the left in Figure 4.7. The image of the function f defined
above is given on the right.
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313432343

314342343

131432343 313423243

131423243

313432434

µ = 314342434

131432434 {2,4}

{4}

{1,2,4} {2,3,4}

{1,2,3,4}

{2}

∅

{1,2}
f

Figure 4.7: Example of bijection from P(µ) to a ring of sets.
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Chapter 5

Conclusion

In Chapter 1 we provided an overview of necessary terminology and results regarding simple
connected graphs and partially ordered sets. A main focus of this chapter was on partial
cubes and the related Djoković–Winkler relation, as well as median graphs and distributive
lattices. In Chapter 2, we discussed Coxeter systems and braid graphs. Properties of reduced
expressions and braid classes were introduced along with the notions of braid shadow, link,
and braid chain. The fact that every reduced expression has a unique factorization in terms
of links implies that every braid graph can be obtained from a box product of the braid
graphs of the corresponding links. This factorization allowed us to focus the remainder of
the thesis primarily on links, which then extends the results to any reduced expression.

Building off the results in [2], in Chapter 3 we provided explicit descriptions of the local
structure of links in Coxeter systems of type Λ. In particular, we were able to precisely
describe what links of rank 1 and 2 look like, as well as what the four leftmost and rightmost
positions of a link look like. We also described the possible forms the the middle five
positions of three overlapping braid shadows may take in a link. We concluded the chapter by
describing the possible forms that the five middle positions of two overlapping braid shadows
may take in a link. Taken together, the results of this chapter completely characterize the
local structure of a link.

In our final chapter, we provided an alternate proof that braid graphs for links in Coxeter
systems of type Λ are partial cubes. In order to do so, we proved two results (Theorems 4.1
and 4.2) concluding that any shortest path between two braid equivalent links uses the same
collection of braid shadows where each braid shadow in the collection appears exactly once.
One of the key results from [2] is that the signature uniquely determines a link. We proved
that the differences in signature can be used to represent the distance between two braid
equivalent links in a braid chain. Moreover, we applied the notion of semicubes from Chapter
1 and signatures of a link to conclude that the Djoković–Winkler relation is transitive for
braid graphs, which results in the braid graph of a link being a partial cube. This allowed
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us to settle a conjecture from [2] stating that the isometric dimension of the braid graph for
a link is equal to the rank of the link. We also showed that the interval between two braid
equivalent links is equal to the set of braid equivalent expressions that share the entries of
the signature that the two initial links share. Chapter 4 contained several conjectures and
in most cases we outlined potential methods of attack.

We now summarize these conjectures here as a list of open problems. Suppose (W,S) is
type Λ and α is a link of rank r.

● Conjecture 4.11: diam(B(α)) = rank(α).

● Conjecture 4.12: There exists a unique pair µ,γ ∈ [α] such that µ and γ are diamet-
rical.

● Conjecture 4.16: For braid equivalent links α, β, and σ, there exists µ ∈ [α] such that
sig(µ) =maj(α,β,σ).

● Conjecture 4.17: B(α) is median.

● Conjecture 4.22: B(α) is the underlying graph for the Hasse diagram of a distributive
lattice.

● Conjecture 4.23: Let µ to be the designated vertex of P(µ). If sigi(α) = sigi(µ), then
there exists β ∈ [α] such that α ⋖ β. Moreover, P(µ) has a unique maximum element
and a unique minimal element, which are diametrical in B(α).
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