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ABSTRACT

STRUCTURE OF BRAID GRAPHS IN SIMPLY-LACED
COXETER SYSTEMS

QUENTIN CADMAN

Any two reduced expressions for the same Coxeter group element are related
by a sequence of commutation and braid moves. We say that two reduced ex-
pressions are braid equivalent if they are related via a sequence of braid moves,
and the corresponding equivalence classes are called braid classes. Each braid
class can be encoded in terms of a braid graph in a natural way. In this thesis, we
study the structure of braid graphs in simply-laced Coxeter systems. In a recent
paper, Awik et al. proved that every reduced expression has a unique factoriza-
tion as a product of so-called links, which in turn induces a decomposition of the
braid graph into a box product of the braid graphs for each link factor. For a
special class of links, called Fibonacci links, they showed that the corresponding
braid graph is isomorphic to a Fibonacci cube graph. In this thesis, we prove
that every Fibonacci cube occurs as the braid graph for a link in any simply-
laced triangle-free Coxeter System whose corresponding braid graph contains the

Coxeter graph of the Coxeter system of type D, as a subgraph.
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Chapter 1

Preliminaries

We begin by discussing the background on Coxeter systems as well as their underlying
fundamental structure.

A Cozxeter system is a pair (W, S) consisting of a finite set S of generating involutions
and a group W, called a Coxeter group, with presentation

W= (S| (st)"") =),

where e is the identity element, m(s,t) = 1 if and only if s = ¢, and m(s,t) = m(¢,s) > 2 for
s #t. It is worth noting that the elements of S are distinct as group elements and m(s,t) is
the order of st [10]. We refer to m(s,t) as the bond strength between s and t.

Since s and ¢ are elements of order 2, the relation (st)™(5%) = e can be rewritten as

sts- = tst--- (1.1)

m(s,t) m(s,t)

with m(s,t) > 2 factors. When m(s,t) =2, st = ts is called a commutation relation and when
m(s,t) >3, the relation in (1.1) is called a braid relation. The replacement

St§++ > {8t
~—— ~——

m(s,t) m(s,t)

will be referred to as a commutation move if m(s,t) =2 and a braid move if m(s,t) > 3. If
m(s,t) <3 for all s,t €S, then (W,S) is called a simply-laced Cozeter system.

We can represent a Coxeter system (W,S) with a Coxeter graph ~ having vertex set S
and edges {s,t} for each m(s,t) > 3. Each edge {s,t} is labeled with its corresponding bond
strength. Since m(s,t) = 3 occurs frequently, we omit this label. Note that s and ¢ are not
connected by a single edge in the graph if and only if m(s,t) = 2. Given a Coxeter graph -y,
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we can easily reconstruct the corresponding Coxeter system. If (W,.S) is a Coxeter system
with corresponding Coxeter graph -, we may denote the Coxeter group as W (+) and the
generating set as S(7). If 4 does not contain any three cycles, then we say v and (W, 5)
are triangle-free.

S1 Sn,
T ) i:
o—O0———0 -+ O—0 o O et O o S3 S4  Sp-2 Sn-1
S1 So 83  Spn-1  Sn So Ss3 S4  Spn-1  Sn So Sn+l
(a) A, (b) Dy (c) Dn

Figure 1.1: Examples of common simply-laced Coxeter graphs.

Example 1.1. The Coxeter graphs given in Figure 1.1 correspond to three common simply-
laced triangle-free Coxeter systems. For each, we summarize the defining relations for the
corresponding Coxeter systems.

(a) The Coxeter system of type A, is given by the Coxeter graph in Figure 1.1(a). In this
case, W(A,) is generated by S(A,) = {s1,S2,...,5,} and has defining relations
e s;5;, = e for all i;
o s5;5; =s;8; when [i - j| > 1;
® 5;5;8; = §;5;5; when |i — j| = L.

The Coxeter group W (A,,) is isomorphic to the symmetric group S,,;1 under the map-
ping that sends s; to the adjacent transposition (i, + 1).

(b) The Coxeter system of type D,, is given by the graph in Figure 1.1(b). The Coxeter
group W(D,,) has generating set S(D,,) = {s1, 82, .., S, } and defining relations
o 52 =¢ for all i
o s;5;=s58;1f [i—j|>1 and i,j # 1;
e 5,5, =555, 1=1and j # 3;
o 515351 = 835153 and s;8;8; = s;58;8; if |1 — j| = 1.

The Coxeter group W (D,,) is isomorphic to the index two subgroup of the group of
signed permutations on n letters having an even number of sign changes.



(¢) The Coxeter system of type D, is given by the graph in Figure 1.1(c). The Coxeter
group W(D,,) has generating set S(D,,) = {51,852, -, 8n, Sns1} and defining relations

o s?=¢ for all i

o s;5;=s58;if [i—j|>1 and i,j # 1;

o s;5;=s58;ifie{l,n+1} and j e {2,n};
o 5,558 =sj8;8;if [i—j|=1

e 5;5;8;,=5;8;5;ifi=1land j=3ort=n-1and j=n+1.
Note that while W (A,) and W (D,,) are finite groups, W (D,,) is infinite [10].

Given a Coxeter system (W, S), let S* denote the free monoid on the alphabet S. An
element w = s, 8;,-S,,, € S* is called a word while a subword of w is a consecutive word of
the form s;,5.,,,'82,.,8¢; for 1 <i < j<m. If a word w = 84, 84,84, € S* is equal to w when
considered as a group element of W, we say that w is an expression for w. If m is minimal
among all possible expressions for w, we say that w is a reduced expression for w, and we call
{(w) :=m the length of w. Note that any subword of a reduced expression is also reduced.
The set of all reduced expressions for w € W will be denoted by R(w). A product of group
elements wywq---w, with w; € W is called reduced if {(wiws - w,) = ¥y £(w;).

The following theorem, called Matsumoto’s Theorem [8], illuminates how reduced ex-
pressions for a given group element are related.

Proposition 1.2 (Matsumoto’s Theorem). In a Coxeter system (W, S), any two reduced
expressions for the same group element differ by a sequence of commutations and braid
moves.

For w € W define the support of w, denoted supp(w), to be the set of generators that
appear in any reduced expression for w. Note that Matsumoto’s Theorem guarantees that
supp(w) is well defined. For sake of brevity, we will often write ¢ in place of s; € S throughout
most of this thesis.

Example 1.3. Let w = 543242 be an expression for some w € W(As). Then we have

543242 = 543422 (via the commutativity of sy and sy)
= 5434 (because the order of s is 2)
= 5343 (via the braid relation s45354 = $35453).

This shows that the original expression w is not reduced, i.e, w ¢ R(w). However, it turns
out 5343 and 5434 are reduced, so (w) =4 and supp(w) = {3,4,5}.
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According to [10], every finite Coxeter group contains a unique element of maximal length,
which we often refer to as the longest element and denote by wy. It is well known that the
longest element in W (A,) is given in one-line notation by

wo=[n+1,n,...,21]
and that ¢(wp) = ("; 1). One possible reduced expression for wy is given by
s1| 5251 | 835281 | -+ | Su8n-1-+838251,

where we have inserted vertical bars to better help visualize this pattern. Indeed, since wy
is reduced, it follows that each subword formed by these bars in wg are also reduced. A
formula for the number of reduced expressions for wy € W(A,) is given in [15].

In light of Matsumoto’s Theorem, we can define a graph on the set of reduced expressions
of a given element in a Coxeter group. For w € W, define the Matsumoto graph G(w) to be
the graph having vertex set equal to R(w), where two reduced expressions w; and wy are
connected by an edge if and only if w; and wsy are related via a single commutation or braid
move. In order to distinguish between commutation and braid moves, an edge is colored red
if it corresponds to a commutation move and colored green if it corresponds to a braid move.
Matsumoto’s Theorem implies that G(w) is connected. Bergeron, Ceballos, and Labbé [3]
proved that for finite Coxeter groups, every cycle in G(w) has even length. In [9], Grinberg
and Postinov extended this result to arbitrary Coxeter systems.

We now define two different equivalence relations on the set of reduced expressions for a
given element of a Coxeter group. Let (W, S) be a Coxeter system of type v and let w € W.
For wy,ws € R(w), wy ~, we if we can obtain w; from ws by applying a single commutation
move of the form st — ts, where m(s,t) = 2. We define the equivalence relation », by taking
the reflexive transitive closure of ~.. Each equivalence class under =, is called a commutation
class, denoted [w]. for w € R(w). Two reduced expressions are said to be commutation
equivalent if they are in the same commutation class.

Similarly, we define wy ~ wy if we can obtain w; from wy by applying a single braid move.
The equivalence relation ~ is defined by taking the reflexive transitive closure of ~. Each
equivalence class under w~ is called a braid class, denoted [w] for w € R(w). Two reduced
expressions are said to be braid equivalent if they are in the same braid class.

Commutation classes have been studied extensively in the literature. In the case of
Coxeter systems of type A,, Elnitsky [5] showed that the set of commutation classes for a
given permutation w is in one-to-one correspondence with the set of rhombic tilings of a
certain polygon determined by w.



323123 321323

232123 321232

231213 312132

213231 132312

212321 123212

121321 123121

Figure 1.2: Matsumoto graph for the longest element in W (Aj3).

Example 1.4. The set of 16 reduced expressions for the longest element in the Coxeter
system of type Az is partitioned into eight commutation classes and eight braid classes:

[232123]. = {232123} [123121], = {123121, 123212, 132312}
[231213], = {231213,213213,213231,231231}  [312312], = {312312}
[321323], = {321323, 323123} [312132], = {312132, 321232, 321323}
[212321]. = {212321} [132132], = {132132}
[321232]. = {321232} [121321], = {121321, 212321, 213231}
[123123]. = {123121,121321} [213213], = {213213}
[132312]. = {132312,132132,312132,312312}  [231213], = {231213,232123, 323123}
[123212]. = {123212} [231231], = {231231}

In general, it is not the case that the number of commutation classes for a fixed group
element is equal to the number of braid classes. Notice that the four braid classes of size 3
correspond to the vertices in the green connected components of the Matsumoto graph given
in Figure 1.2 while the singleton braid classes correspond to the four vertices that are not
incident to any green edges.

Meng [14] studied the number of commutation classes and their relationships via braid
moves, and Bédard [2] developed recursive formulas for the number of reduced expressions

5



in each commutation class. Determining the number of commutation classes for the longest
element in W(A,) remains an open problem. To our knowledge, this problem was first
introduced in 1992 by Knuth in Section 9 of [13] using different terminology. A more general
version of the problem appears in Section 5.2 of [11]. In the paragraph following the proof of
Proposition 4.4 of [16], Tenner explicitly states the open problem in terms of commutation
classes. The best known bound for the number of commutation classes for the longest element
in W(A,) appears in [6]. Even less is known about the number of commutation classes of
the longest elements in other finite Coxeter groups.

Braid classes have appeared in the work of Bergeron, Ceballos, and Labbé [3] while
Zollinger [18] provided formulas for the size of braid classes for permutations in the case of
Coxeter systems of type A,,. Fishel et al. [7] provided upper and lower bounds on the number
of reduced expressions for a fixed permutation in W (A,,) by studying the commutation classes
and braid classes together. However, unlike commutation classes, braid classes have received
very little attention. Many natural questions regarding braid classes remain open, even for
type A,. The remainder of this thesis will focus exclusively on braid classes in simply-laced
Coxeter systems with an aim of describing their combinatorial architecture. For brevity, we
will write [w] in place of [w]p.

The relationship among the reduced expressions in a fixed braid class can be encoded
using the maximal green connected components of the corresponding Matsumoto graph. Let
w be a reduced expression for w € W. We define the braid graph of w, denoted B(w), to
be the graph with vertex set equal to [w], where wy,wy € [w] are connected by an edge if
and only if w; and wsy are related via a single braid move. Note that we are defining braid
graphs with respect to a fixed reduced expression (or equivalence class) as opposed to the
corresponding group element. The latter are the graphs that arise from contracting the
edges corresponding to braid moves in the Matsumoto graph. Very little is known about the
overall structure of braid graphs for reduced expressions.

Example 1.5. Below we describe three different braid classes and illustrate their corre-
sponding braid graphs.

(a) Consider the Coxeter system of type A;. The braid class for the reduced expression
1213243 consists of the following reduced expressions:

wy = 1213243, wq = 2123243, ws := 2132343, wy = 2132434.

(b) In the Coxeter system of type Dy, the expression 343132343 is reduced. Its braid class
consists of the following reduced expressions:

w) = 1213243565, w) := 2123243565, wj := 2132343565, w), := 2132434565.
w} = 1213243656, w), := 2123243656, w/, := 2132343656, wj := 2132434656.
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W, W o W wy
WII WII
ws wh b w! ’ i
wy
Wy O Wf1 O Q) Wé Wg
(a) (b) (c)

Figure 1.3: Braid graphs generated by various reduced expressions.

(c) Now, consider the Coxeter system of type Dy. The expression 2321434 is reduced and
its braid class consists of the following reduced expressions:

wi = 2321434, wy = 3231434, wi = 2321343, w) := 3231343, w! := 3213143.

The braid graphs B(wy), B(w}), and B(w{') are depicted in Figures 1.3(a), 1.3(b), and 1.3(c),
respectively.

We see that for any Coxeter system (W, S), we can have many expressions for a given
w € W, many of which are not reduced (see Example 1.2.4). Indeed, for any w € W, we can
utilize the defining relations for the given group to convert a non-reduced expression into a
reduced expression [10]. However, as our expressions get larger, this becomes an inefficient
way to test whether a given reduced expression is reduced or not. A more efficient method
is needed.

Humphreys gives an explanation of how the definition of Coxeter systems are motivated
by finite groups generated by reflections, as well as affine Weyl groups, both of which have
geometric representations (see [10, Chapters 1 and 5] for details). Interestingly, Coxeter sys-
tems admit a sort of “weak” geometric representation via groups generated by “reflections,”
which have many uses.

Every finite Coxeter system (W, S) can be realized as a finite reflection group acting on
real Euclidean space, where each s € S corresponds to reflection across a hyperplane passing
through the origin. For an arbitrary Coxeter system (W,.S) we generalize the finite case as
follows. Begin with a vector space Vi over R having basis {as | s € S} in bijection with S
and then impose a geometry on Vj;r using a bilinear form defined via

m(s,t)

B(as,aq) = —cos( T ),



where s,t € .S. Note that for the purposes of this thesis, we restrict ourselves to only simply-
laced Coxeter systems, i.e., when m(s,t) < 3 for all s,¢ € S. Thus, we can describe all possible
values of B(ay,ay):

—cos(m) =1, ifm(s,t)=1
B(os,ap) =1 -cos(%) =0, if m(s,t)=2
-cos(3) =-3%, if m(s,t)=3.

Note that in the case s = ¢, we have m(s,t) = 1. Now, let Hy denote the subspace of V}y, that
is orthogonal to a;. For each s € S, we define the reflection o, : V - V via

0s(A) = A= 2B (s, A)a.
Note that for t € .S, we have

s
os(ay) =ap+2cos| —— | a,.
(@0 =208 )
It follows that os(as) = —a,. Restricting this action to simply-laced Coxeter systems, we
would obtain the following:

ayp —2ag, if m(s,t) =1
os(ay) =14 oy, if m(s,t) =2
o +ag, if m(s,t) =3.

Indeed, this definition implies that if m(s,t) = 3 for s,t € S, then o4(y) = o¢(as). It turns

out that for s,t € S, 0,0, is a rotation through an angle of %, where o, fixes the subspace

H, pointwise and o, has order 2 in GL(Vyy). The next result appears in [10].

Proposition 1.6. If (W, S) is a Coxeter system, then there exists a unique monomorphism
o: W - GL(V,) sending s to o, where the group image o(w) preserves the form B on Viy.

The map o is often referred to as the geometric representation of W. For convenience
sake, we write w(«) in place of o(w)(«), where w € W. Moreover, we will write i(«) in
place of s;(«) when the simple generators have a numeric label.

Example 1.7. Consider the simply-laced Coxeter system of type D4, whose Coxeter graph
is determined by Figure 1.1(b). Observe that 3,4 € S(D,) and m(3,4) = 3. Hence, 3(ay) =
ay +ag = ag+ay =4(as). Moreover, 1,2 € S(Dy) and m(1,2) = 2, and so 1(az) = ap, while
2(0[1) = Q1.

Definition 1.8. Let (W, S) be a Coxeter system and define ® := {w(a;) | s € S,w e W}.
The set @ is called the root system for (W, S), where the elements of ® are called roots, and
if s € .5, then «ay is referred to as a simple root.
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Roots in ® are vectors and notice that each root is a unit vector since w preserves the
bilinear form B on Vy,. If a € &, we can write a uniquely as

=) cas,

seS

where each ¢, € R, which is a linear combination of simple roots.

It turns out that we can partition ® into two sets composed of positive roots and negative
roots, respectively. Positive roots are all a € ® such that ¢, > 0 for all s € S. In particular,
each ay is a positive root. Negative roots are all o € ® such that ¢, <0 for all s € S. The
set of positive roots is denoted by ®*, while the set of negative roots is denoted by ®~. It is
known that ® = &+ (J -, where the union is disjoint, and ® = -& [10].

Definition 1.9. Let (W,S) be a Coxeter system. Let w € W and w = s,, 8., +S;,, be an
expression of w, not necessarily reduced. We define the root sequence of w via

Q(W) = (awm7$m(aiﬂm—l)7 xmxm—l(azm,QL s 7Imxm—1xm—2“'x2(ax1))-

Note that 6(w) consists of m entries from the corresponding root system ®. Notice that
we are inputting roots of a given word by reversing its order and sequentially feeding it roots
from right to left, where each time we are increasing the size of our word by one generator.
See Example 1.11. The next proposition appeared in [4].

Proposition 1.10. Let (W, S) be a Coxeter system with root system ®. Let w € W and
ses.

1. If wy,wy € R(w) such that 6(wy) = 0(wy), then wy = ws.
2. we R(w) if and only if each entry of #(w) is a positive root.

Proposition 1.10(1) implies that the root sequences of a given reduced expression is unique
to that expression. The second item of Proposition 1.10 is of particular importance to us.
It states that an expression is reduced if and only if its corresponding root sequence consists
of entirely positive roots. Let us consider an example.

Example 1.11. Consider the simply-laced Coxeter system of type D, whose Coxeter graph
was shown in Figure 1.1(b). We will verify that the expression 3432313 is reduced by
computing its root sequence #(3432313), which is described below:

® (3,

[ ] 3(0[1) = Q1 +Qsg,



31(0(3) = 3(043 + (1/1) = -3+ a1 +Q3 =07,
313(an) =31(ae + az) =3(ap + a3+ 1) = + a3 — 3 + a1 + a3 = a1 + Qg + a3,
3132(0&3) = 313(0&3 + CKQ) = 31(—043 + Qg + 063) = 31(0&2) = 3(&2) =g + (3,

31323(ayy) = 3132(ay + a3) = 313(ag + az + an) =31 (g + az + —az + ag + ag) = 31 (s +
as+ay)=3(e+as+ar+ay) =as+az—az+ap+az+ o+ a3 =a) + g+ 203 + ay,

313234(0[3) = 31323(()(34‘0[4) = 3132(-0&3+O&4+O¢3) = 3132(0&4) = 313(0&4) = 3]_((1/44-0[3) =
3(0&4-’1-043 +O[1) =01+ Q3+ Qy.

Note that each entry of #(3132343) is highlighted in blue. Since each root in the root
sequence is positive, the expression is reduced by Proposition 1.10.

We can use this same proposition to show that a given word is not reduced. Consider
the expression 3132313 for some element in W (D,). We obtain the following root sequence:

s,

3(an) =g + g,

31(a3) =3(ag+ 1) = —azg+ a1 +as = ar,

313(an) =31(as+a3) =3(ag+az+ay) = s+ a3 — a3z + 1 + 3 = a1 + g + Qg,
3132(as3) = 313(az + ) = 31(—az + as + a3) = 31(az) = 3(an) = as + ag,

31323(0&1) = 3132(0{14-063) = 313(0&14-0534-0[2) = 31(0(14-043—0634-0424-043) = 31(a2+a3+a1) =
3(0[2+C¥3+041 —Oél) = Qg + Q3 — Q3 =09,

313231(a) = 31323(as + ) = 3132(—ag +as + ) = 3132(ar) = 313(a) = 31(as +ag) =
3(—041 + Qg3 + Oél) = 3(0[3) = —(043.

Observe that the last entry of #(3132313) is a negative root, highlighted in red, which implies
that 3132313 is not reduced by Proposition 1.10. A reduced expression for the corresponding
group element would be 13231, which can be verified via its roots sequence.

Indeed, the root sequence of a given expression provides us with a powerful tool for
determining whether that expression is reduced in any Coxeter system.
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Chapter 2

Structure of braid classes for
simply-laced Coxeter systems

An effort to understand the structure of the braid graphs led to the discovery of some
interesting results that characterize the structure of the corresponding braid classes in certain
simply-laced Coxeter systems. The goal of this chapter is to summarize results in a recent
paper by Awik et al. [1]. Throughout this chapter, we assume that (W, .S) is a simply-laced
Coxeter system. It is worth pointing out that many of the results presented here do not hold
in arbitrary Coxeter systems.

If 4,7 € N with i < j, then we define the interval [i,j] :={é,i+1,...,j - 1,5}

Definition 2.1. Suppose w = s;,5,,**S;,, 1s a reduced expression for w e W. We define the

local support of w over [i, j] via

m

suppy; (W) = {sz, | k € [1, 5]}
The global support of the braid class [w] over [i, j] is defined by

SuPP[[i,j]]([W]) = L% ]SUPP[[i,j]](Wl)'
wi€[w

In other words, supp[[ivjﬂ(w) is the set consisting of the generators that appear in posi-
tions 4,2+ 1,...,7 of w while supp[[iyj]]([w]) is the set of generators that appear in positions
1,1+ 1,...,7 of any reduced expression braid equivalent to w. Note that in the case of the
degenerate interval [i,4], we will use the notation supp,(w) and supp,([w]) and we will sim-
ply write supp(w) for the set of generators that appear in w. The following definition first
appeared in [1].

Definition 2.2. Suppose that (W,S) is a simply-laced Coxeter system. If w = s, S, Sz,
is a reduced expression for w € W, then the interval [i,i + 2] is a braid shadow for w if and
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only if s;, = S4,;,, and m(sy,, Sz,,,) = 3. The collection of braid shadows for w is denoted by
S(w) and the set of braid shadows for the braid class [w] is given by

S(wl):= U S(wi).

wi€e[w]
The cardinality of S([w]) is called the rank of w, which we denote by rank(w).

In other words, a braid shadow is the location in a reduced expression where we have an
opportunity to apply a braid move. Note that a given reduced expression may have many
braid shadows or possibly none at all. The sets S(w) and S([w]) capture the locations
where braid moves can be performed in w in any reduced expression braid equivalent to w,
respectively. If [i,7 + 2] is a braid shadow for [w], then we may refer to position i + 1 in any
reduced expression in [w] as the center of the braid shadow.

Example 2.3. Consider the reduced expressions given in Example 1.5. By inspection, we
see that:

(a) S(Wl) = {[[173]]} and S([Wl]) = {[[173]]’ [[375]]7 [[577]]}
(b) S(wi) ={[1,3],[8,10]} and S([wi]) ={[1,3].[3,5].[5,7], 8, 10]}.
(c) Swy) ={[1,3],[5, 7]} and S([wy]) = {[1,3]. [3,5]. [5, 7]}-

In [1], the authors prove that braid shadows for braid equivalent reduced expression may
only overlap by a single position.

Proposition 2.4. Suppose (W,S) is a simply-laced Coxeter system. If w is a reduced
expression for w € W with [i,7 + 2] € S([w]), then [i + 1,7 + 3] ¢ S([w]).

This proposition motivates the following definition, which will be vital in upcoming dis-
cussions.

Definition 2.5. Suppose (W, S) is a simply-laced Coxeter system. Let w = $;, 84,8, be
a reduced expression for w € W. We say that w is a link if and only if either m =1 or m
is odd and S([w]) = {[1,3],[3,5],..-,[m —4,m =2],[m -2,m]}. If wis a link, then the
corresponding braid class [w] is called a braid chain.

Loosely speaking, w is a link if there is a sequence of overlapping braid moves that “cover”
the positions 1,2,...,m. Note that if w is a link, then the rank of w is k if an only if w
consists of 2k + 1 letters. Notice that the center of every braid shadow is an even index.
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Example 2.6. Consider the reduced expressions given in Example 1.5. Since S([wy]) =
{[1,3],[3,5], [5, 7]}, wi is a link and [wy ] is a braid chain. On the other hand, since S([w}]) =
{[1,3],13,5], [5, 7], [8,10] }, it follows that w/ is not a link and hence [w] ] is not a braid chain.
However, it turns out that the subwords 1213243 and 565 of wj are links in their own right.
Lastly, since S([w{]) = {[1,3],[3,5],[5, 7]}, w{ is a link and [w{] is a braid chain.

Definition 2.7. Let wy be a reduced expression for w € W with ¢(w) > 1. We say that wy
is a link factor of wy provided that

1. wy is a subword of wy,
2. wsy is a link, and
3. for every subword ws of wy, if wy is a subword of w3 and ws is a link, then wy = ws.

It follows immediately from Definition 2.7 that every reduced expression w for a noniden-
tity group element can be written uniquely as a product of link factors, say wyws---wy, where
each w; is a link factor of w. We refer to this product as the link factorization of w. For
emphasis, we will often denote such a factorization via w = wy | wy | -+ | wg. The following
proposition, which appears in [1], is an immediate consequence of the definitions.

Proposition 2.8. Suppose (W,S) is a simply-laced Coxeter system. If w is a reduced
expression for w € W with link factorization wy | wa | -+ | wy, then

[w] = {w [wp [~ wj s wje [wil,i=1,2,... k}.

Moreover, the cardinality of the braid class for w is given by

card([w]) = lﬁ card([w;]),

and rank of w is given by

rank(w) = ;rank(wi).

We can utilize the following definition to decompose a braid graph according to the link
factorizations of the corresponding braid class.

Definition 2.9. If G; = (V1, E1) and Gy = (V3, Ey) are arbitrary graphs ordered pairwise by
their vertex set and edge set, respectively, then the box product of the two graphs, denoted
G10G,, is the graph with vertex set V; x V5 and there is an edge from (z1,y1) to (z2,y,) if
and only if either

13
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Figure 2.1: The braid graph for the reduced expression from Example 2.11 and its decom-
position.

1. x1 = x5 and there is an edge from y; to ys in G, or

2. 11 = y2 and there is an edge from x; to x5 in Gj.

Proposition 2.8 implies that the braid graph for any reduced expression for a nonidentity
group element can be decomposed as the box product of the braid graphs for the correspond-
ing factors in the link factorization. Note that the decomposition is unique if one respects
the ordering of the link factors.

Corollary 2.10. Suppose (W, S) is a simply-laced Coxeter system. If w is a reduced ex-
pression for w € W with link factorization wy | wy | -+ | wg, then

B(w) 2 B(wy) O B(wy) O---0 B(wy).

In other words, we can isolate each individual link factor in a given link factorization and
piece together their respective braid graphs.

Example 2.11. Consider the reduced expression w = 1213243565 for some w € W (Ag). The
link factorization for w is 1213243 | 565. The decomposition B(w) = B(1213243) o B(565)
guaranteed by Corollary 2.10 is shown in Figure 2.1. Note that we have utilized colors to
help distinguish the link factors.

Example 2.12. Consider the Coxeter system of type D; determined by the Coxeter graph
in Figure 1.1(b). The reduced expression 3132343754763431323 has link factorization

3132343 | 7|5|4 763431323,

The braid graphs for the first and last factors are isomorphic to the braid graph in Fig-
ure 1.3(c). The braid graph for each singleton factor consists of a single vertex. The braid
graph for the entire reduced expression and its decomposition are shown in Figure 2.2.

14
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Figure 2.2: The braid graph for the reduced expression from Example 2.12 and its decom-
position.

Proposition 2.8 provides us with a powerful tool for understanding the fundamental
structure of braid graphs in simply-laced Coxeter system. Corollary 2.10 naturally begs the
question: What are the potential braid graph structures for braid links? Moreover, is there
a Coxeter system in which all possible braid graphs for links occur? We look to answer these
questions in upcoming sections.

According to the next proposition from [1], the support of a braid shadow is constant
across an entire braid class in simply-laced triangle-free Coxeter systems.

Proposition 2.13. Suppose (W,S) is a simply-laced triangle-free Coxeter system. If wy
and wy are two braid equivalent reduced expressions for w € W with ¢(w) > 3, then for all
[i,i+2] € S(wi) nS(wa), Suppﬂi,i+2](wl) = Supp[[i,i+2]](w2)'

Example 2.14. In the simply-laced triangle-free Coxeter system of type Aj given in Exam-
ple 1.4, we partitioned all 16 reduced expressions into eight commutation classes and eight
braid classes. Indeed, we see that for any braid class if two braid equivalent expressions
share a braid shadow, the support is the same.

123121

{123121,123212,132312}
312312
312132

(312312}
(312132, 321232, 321323}

[ ]

[ ]

[ ]

[132132] = {132132}

[121321] = {121321, 212321, 213231}
[213213]

[231213]

[ ]

(213213}

{231213,232123, 323123}

231231] = {231231}
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Note that we provide overlines and underlines to represent braid shadow locations in each
braid class. In any case we see that for any two braid equivalent expressions, if they have
braid shadows that occur in the same position, the support is the same. This example
also demonstrates Proposition 2.4, i.e, if two braid shadows intersect, they intersect by one
position.

Indeed, the previous result is false without the assumption that the Coxeter system is
triangle free. A counterexample is given below.

Example 2.15. Consider the Coxeter system of type A, which is determined by the Coxeter
graph in Figure 2.3. Note that the Coxeter graph has bond strength 3 for all pairs of vertices.
The expression wy = 1213121 is reduced, and it is easy to see that wy = 2123212 € [wy].
However, suppys 51(wi1) = {1, 3} while suppys 5;(w2) = {2,3}. This shows that Proposition 2.13
is false when the Coxeter graph has a three-cycle.

53

A

51 52

Figure 2.3: Coxeter graph of A,.

When a reduced expression has a braid shadow, the collection of generators that may
appear at the center of the braid shadow in any braid equivalent reduced expression is
completely determined by the support of that braid shadow. The next result from [1] makes
this more precise.

Proposition 2.16. If (W, S) is a simply-laced triangle-free Coxeter system and w is a
reduced expression for w € W, then [i,i + 2] € S(w) if and only if [i,i + 2] € S([w]) and
SUPP[; i+2] (w) = supp;.; ([w]).

The previous proposition allows us to assume that suppy;,;j([w]) = {s,t} whenever [i,i+
2] € S(w) with suppy; ;.01 (w) = {s,t}.

Braid classes in simply-laced Coxeter systems seem to have a reasonable structure that
translates to nice classifications of their respective braid graphs. We now wish to classify
links and braid graphs in the simply-laced Coxeter system of type A,. Our notions of
link and link factorization generalize Zollinger’s definitions of string and maximal string
decomposition, respectively, for Coxeter systems of type A,, that appear in [18]. The next
result is a reformulation of Lemma 1 from [18] in terms of braid graphs.
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Proposition 2.17. If w is a link in the Coxeter system of type A, consisting of 2¢—1 letters,
then

14

Recall that Corollary 2.10 says that the braid graph for any reduced expression for a
nonidentity group element can be decomposed as the box product of the braid graphs for
the corresponding factors in the link factorization. In light of Proposition 2.17, we can be
more explicit for Coxeter systems of type A,, as the next result indicates. This result is
also a reformulation of Corollary 6 in [18] and can be thought of as a classification of braid
graphs for reduced expressions in Coxeter systems of type A,.

Proposition 2.18. If w is a reduced expression for w € W (A,) with link factorization

wi | wa | -+ | wy such that each link has 2[; — 1 letters, then
o o o
(@] O (e]
Bw)z il O i plp O---0 &l
o o o
(@] O O

where the 7th factor in the decomposition is a path with [; vertices.

EIDIDO
121 4f§4|

O 56576

12143456576

e

Figure 2.4: The decomposition of the braid graph for the reduced expression in Example 2.19.

Example 2.19. The word w = 12143456576 is a reduced expression for some element in
W (A7). The link factorization for w is 121 | 434 | 56576. The resulting braid graph and its
decomposition into a product of paths is shown in Figure 2.4.

In a future paper, we plan to provide a characterization of the braid graphs for links,
and hence all reduced expressions, in Coxeter systems of type D,,. Indeed, we see from our

examples that the structure of braid graphs are determined by applying a braid move in a
respective braid shadow or not. We can interpret this as “turning” a braid shadow on or off.
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Chapter 3

Braid graphs as subgraphs of
hypergraphs

This chapter is a further summary of results from [1]. For a positive integer m we will denote
the set of binary strings of length m by {0,1}™. That is,

{0,1}™ == {ajas---a, | ax € {0,1}}.

Define the hypercube graph of dimension m, denoted by @),,, to be the graph whose vertices
are elements of the {0,1}™ with two binary strings connected by an edge exactly when they
differ by a single digit.

If G is a graph, let V(G) denote the vertex set of G. An embedding of a simple graph
G into a simple graph H is an injection f : V(G) — V(H) with the property that v and v
are adjacent vertices in G if and only if f(u) and f(v) are adjacent in H. If in addition,
f(u) and f(v) adjacent in H implies u and v are adjacent in G, then f is called an induced
embedding. If f is an induced embedding, then G is isomorphic to the subgraph of H induced
by the image of f.

Assume (W, .S) is a simply-laced triangle-free Coxeter system and suppose w is a reduced
expression for some w € W with link factorization wy | wg | -+ | wg. One goal of this chapter
is to establish an induced embedding of B(w) into Qrank(w)- In particular, for simply-laced
triangle-free Coxeter systems, the braid graph for every reduced expression is isomorphic to
an induced subgraph of a hypercube graph whose number of vertices are determined by the
number of braid shadows. In light of Proposition 2.16, we are able to define the following
map.

Definition 3.1. Assume that (W,S) is a simply-laced triangle-free Coxeter system and
let w be a link of rank m. For each k =1,2,...,m, assume that suppy,([w]) = {sok, tor },
where sgf, := suppy,(w). Define U, : [w] - {0,1}™ via ¥,,(w;) = ajag---a,, when m > 1 and
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Figure 3.1: The induced embedding of B(w;) into Q3 as in Example 3.3.

wi € R(w), where
0, if suppys(wy) = sy
ar = .
1, if suppy;(w1) = tax.

In the case that m = 0, the unique element (consisting of a single letter) in the braid class is
mapped to the empty binary string.

It is worth pointing out that the definition of the map W,, depends on the choice of link.
Choosing a different representative of [w] will necessarily result in a different mapping. The
next result appears in [1].

Proposition 3.2. If (W, S) is a simply-laced triangle-free Coxeter system and w is a link of
rank m, then the map W,, given in Definition 3.1 is an induced embedding of B(w) into Q,,.

Example 3.3. Consider the reduced expressions w;,...,w; given in Example 1.5(c). The
braid graph B(w]) was shown in Figure 1.3(c). In Example 2.6 we showed that w; is a link
of rank 3. Proposition 3.2 guarantees that there are at least five distinct induced embeddings
of B(Wlll) into (Y3, one for each of Wlll, W;, Wg, WZ, and Wg. One possible induced embedding,

"

using w,, is shown in Figure 3.1.

In light of Corollary 2.10, we can construct an induced embedding for any reduced ex-
pression in simply-laced triangle-free Coxeter systems by applying Proposition 3.2 to each
link factor and then concatenating the resulting binary strings. This yields the following
result, which appears in [1].

Proposition 3.4. If (W, .S) is a simply-laced triangle-free Coxeter system and w is a reduced
expression for some nonidentity w € W, then there is an induced embedding of B(w) into

Qrank(w)-

Since the number of vertices in Qrank(w) 18 2*<"), we obtain the following corollary.
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Corollary 3.5. If (W, S) is a simply-laced triangle-free Coxeter system and w is a reduced
expression for some nonidentity w € W, then card([w]) < 2r22kW). Moreover, if

VVZ:VV1’VV2|"-|VVk,
is a braid link factorization, then the bound is achieved precisely when rank(w;) < 1 for all 7.

If (W,S) is a simply-laced Coxeter system and w € W such that ¢(w) = n, then the
maximum number of braid shadows that any reduced expression for w can have is |1 ].
For simply-laced Coxeter systems, it is clear that as the length increases, so too does the
number of possible braid shadows. For finite Coxeter groups, the length function is bounded
above by the length of the longest element. It turns out that all of the finite simply-laced
Coxeter systems are triangle free [10]. For each of these groups, we can utilize Corollary 3.5
to obtain an upper bound on the cardinality of any braid class in that group.

Since the length of the longest element in the Coxeter system of type A, is n(";l), the

maximum number of braid shadows that a reduced expression for an element in W (A,)
n2+n—2J
4

could have is | . Indeed, this maximum is attained for at least n = 1,2, 3. Nonetheless,

Corollary 3.5 implies that if w is a reduced expression for some nonidentity element in

n2+n72

W(A,), then card([w]) < 2177, For example, if n = 3, then the cardinality of every braid
class in W(A3) must be less than or equal to 4. However, the actual maximum size of a
braid class in W(Aj3) is 3. As n increases, the bound in Corollary 3.5 deteriorates. In [18],
Zollinger establishes sharp upper bounds on the cardinality of a braid class for a fixed length
across all Coxeter systems of type A,.

In the case of type D,,, the longest element has length n? —n [10], and so the maximum
number of braid shadows that a reduced expression for an element in W (D,,) could have is
[@J Thus, if w is a reduced expression for some nonidentity element in W(D,,), then

n?-n-1 |

card([w]) < 21"
We can view any connected graph GG as a metric space by defining the distance between
u,v € V(G) via

dg(u,v) :=length of any minimal path between u and v.

Note that in the case of the hypercube graph @), this distance agrees with the Hamming
distance. An isometric embedding of a graph G into a graph H is a function f : V(G) - V(H)
with the property that dg(u,v) = dg(f(u), f(v)) for all u,v € V(G). In this case, G is
isometrically isomorphic to an induced subgraph of H. Since two vertices are adjacent if
and only if the distance between them is one, every isometric embedding is also a graph
embedding (i.e., f is also injective). Note that every isometric embedding is an induced
embedding.
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In [1], the authors conjecture that the embedding given in Proposition 3.4 is actually
an isometric embedding and we will illustrate this claim for a special class of links that are
closely related to the Fibonacci numbers. If true in general, this would imply that every
braid graph in a simply-laced triangle-free Coxeter system is a partial cube. A partial cube
is a graph that is isometric to a subgraph of a hypercube.

Definition 3.6. Suppose (W, S) is a simply-laced triangle-free Coxeter system. If ¢ is a
link with the property that S([¢]) = S(¢), then we will refer to ¢ as a Fibonacci link and
the corresponding braid class [¢] will be referred to as a Fibonacci chain.

That is, a Fibonacci link is a special type of link with the property that every braid
shadow for its corresponding braid class appears in the link. The following proposition
from [1] describes a standard representation for Fibonacci links that will be of great use in
the succeeding chapter of this thesis.

Proposition 3.7. Suppose (W, S) is a simply-laced triangle-free Coxeter system of type -.
Then every Fibonacci link of rank m can be written in the form

@ = Sty Sty -+Sty, Sty S

Tm

for some s,t,,,t0,,. .. ts,, €S with m(s,t,,) =3 for all i = 1,2...,m and m(t,,,t,,) = 2 for
1% 7.

Notice that the structure of ¢ in the previous proposition implies that the Coxeter
graph induced by {s,tz,,ts,...,tz, } must be a star graph with s connected to each of

toystays -y le, . We now construct several examples and nonexamples of Fibonacci links in
some simply-laced triangle-free Coxeter systems.

Example 3.8. Not every link is a Fibonacci link. For instance, in the Coxeter system of
type Ay, the reduced expression 1213243 is a link, but not a Fibonacci link, since [3, 5] and
[5,7] are not braid shadows. In the Coxeter system of type Ds, the reduced expression
4534313234313 is a link, but it is not a Fibonacci link since [[1, 3] is not a braid shadow for
the expression.

Example 3.9. In the Coxeter system of type A,, there are no Fibonacci links of rank
3 or larger due to the characterization in Proposition 2.17 together with Proposition 3.7.
The only Fibonacci links we can build in Coxeter systems of type A, are of the forms
$iSi+1Si = Si+15iSi+1 and $;8,_15;Si+15;. 1t 1s more difficult to write down all the Fibonacci
links in the Coxeter system of type D,. The following reduced expressions are Fibonacci
links of ranks 1 through 5 in type Dy:

343, 34313, 3431323, 343132343, 34313234313.
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Figure 3.2: Fibonacci cube Fj.

In fact, it is not possible to find a Fibonacci link of rank greater than 5 in type D,,. This
fact is obvious in type D, since the longest element has length 12, but remains true even
for large n. The longest possible Fibonacci link in type D, is of the form 3a3b3c3a3b, where
a,b,c € {1,2,4}. Notice that Proposition 3.7 implies that every link in type D, is braid
equivalent to a Fibonacci link since the Coxeter graph for D, is a star graph.

Each Fibonacci link carries with it rich recursive properties that manifest in the structure
of the braid class and the corresponding braid graph. The next result from [1] tells us that
Fibonacci chains contain a Fibonacci number of links. As usual, we define the Fibonacci
numbers recursively by F),,; = F,, + F,,_1 with the initial condition F} = F, = 1.

Proposition 3.10. Suppose (W, .S) is a simply-laced triangle-free Coxeter system. If ¢ is
a Fibonacci link of rank m > 0, then card([¢]) = Fs2.

It turns out that the braid graph for a Fibonacci link of rank m is isomorphic to a
well-known induced subgraph of @),, having a Fibonacci number of vertices. We define the
Fibonacci cube of order m as the subgraph F,, of @,, induced by set of vertices

X ={aras+a, €{0,1}™a;-a;51 =0, 1 <i<m-1}.

That is, X,, is the collection of length m binary strings that do not contain the consecutive
substring 11. Fibonacci cubes have been studied extensively in the literature. According
to [12], each Fibonacci cube is a partial cube and |X,,| = Fj,.42.

Example 3.11. The Fibonacci cube F, is given in Figure 3.2. We see that F, has vertex
set X = {0000, 1000, 0010,0100, 1010,1010,0101,0001}, and so | X4 = 8 = Fg.

The next proposition is the main result of [1].

Proposition 3.12. Suppose (W, S) is a simply-laced triangle-free Coxeter system. If ¢ is
a Fibonacci link of rank m, then B(¢) is isomorphic to the Fibonacci cube F,,.
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(a) B(343) = F (b) B(34313) = F, (c) B(3431323) = Fy

(d) B(343132343) = F4 (e) B(34313234313) = F;

Figure 3.3: Braids graphs for several Fibonacci links in the Coxeter system of type Dj.

Example 3.13. Consider the Fibonacci links in type D, from Example 3.9:
343,34313, 3431323, 343132343, 34313234313.

According to Theorem 3.12, the corresponding braid graphs are Fibonacci cubes. Each braid
graph is depicted in Figure 3.3. In each graph, the Fibonacci link always corresponds to the
vertex of highest degree.

Indeed, Fibonacci links and their corresponding Fibonacci cubes provide a detailed de-
scription for the structure of special types of braid links. In the next chapter, we will prove
that every Fibonacci cube occurs as a braid graph when the given Coxeter graph has the
Coxeter graph of type D, as a subgraph.
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Chapter 4

Existence of Fibonacci cubes as braid
graphs

We will now expand on the relationship between Fibonacci cubes and braid graphs in simply-
laced Coxeter systems. As seen in the previous chapter, every braid graph for a Fibonacci
link in a simply-laced triangle-free Coxeter system is isomorphic to a Fibonacci cube.

Recall from Example 3.13 that the Fibonacci cubes F1, Fa, F3, F4, and F5 are realized
as braid graphs for Fibonacci links in the Coxeter system of type Ds. We obtained these
five Fibonacci graphs from the Fibonacci links:

343, 34313, 3431323, 343132343, 34313234313.

However, these are not the only Fibonacci links that yield these graphs. For example, 313
and 3134323 are also Fibonacci links in W (D) whose braid graphs are isomorphic to F;
and Fj3, respectively. It is only natural to ask whether the Fibonacci cubes F,, for n > 6 also
occur as a braid graph for a Fibonacci link in some Coxeter system.

In this chapter, we will show that every Fibonacci cube is realized as the braid graph
for a Fibonacci link in any simply-laced triangle-free Coxeter system having type Dy as a
subgraph of its Coxeter graph. This addresses an open question posed at the end of [1].

Definition 4.1. The Coxeter system of type Dy is given by the Coxeter graph in Figure 4.1.
Using our labeling, W (D,) has generating set S(Dy) = {x,a,b,c,d} and defining relations:

1. 2=efor allie{z,a,b,c,d};
2. ij=jiifi#jandi,je{abcd};

3. iji=jijif i =z and j € {a,b,c,d}.
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Note that we have seen the general Coxeter graph of type D,, in Figure 1.1(c). Moreover,
the Coxeter graph of the system of type Dy, given in Figure 1.1(b), is a subgraph of the
Coxeter graph of type 54, as seen in Figure 4.1 up to relabeling. It is worth noting that
the Coxeter graph of type Dy can be thought of as the Coxeter graph of type D4 with an
additional generator. Unlike W (Dy), W(D,) is infinite. This implies that there are reduced
expressions of arbitrary length, which provides the opportunity for possibly infinitely many
Fibonacci links. Additionally, a given braid shadow performs the same function regardless
of the support of it, i.e., if two Fibonacci links have the same rank, their respective braid

graphs will be isomorphic.

Figure 4.1: Coxeter graph for type D,.

Now, by Proposition 3.7, we know that we can express any Fibonacci link, ¢, of rank m
in the Coxeter system of type D, in the form:

@ =Tty Tty xty,xty, T, T,

where t,, € {a,b,c,d}, m(x,t,,) = 3, and m(t,,,t.,) = 2, for all i # j. As described earlier,
we can potentially express Fibonacci links in multiple forms, as long as the expressions have
the same rank and have isomorphic braid graphs.
We will show that the following expression is a reduced expression for a Fibonacci link
of rank m:
O = Ty, Tty Tt Tl T,

where

ifi=1 (mod 4)
ifi=2 (mod4)
ifi=3 (mod 4)
ifi=0 (mod 4).

SRS S S

In other words, we cycle through generators d,c,b,a from left to right. As an example,
consider the following expressions:

o p, =xdr
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e v, =xcrdx

* p; =xbrcxdr

o ¢, =zraxbrcrdx

e . = vdrarbrcxdz

It turns out that each of these expressions is reduced (see Example 4.3). However, while
these Fibonacci links have the same rank as those given in Example 3.9 and Example 3.13,
they are different reduced expressions. Regardless, the braid graph for each is isomorphic
to F1,Fo, F3, F4, and Fs, respectively. Also, notice that as we increase the rank of each
potential Fibonacci link from m to m+1, we are appending xt,,.1 to the left of the expression.

We claim that we can obtain Fibonacci links in type D4 with rank greater than 5. When
considering potential Fibonacci links of rank higher than 5, we are interested in whether the
expression in question is reduced or not. If the expression is reduced, then the definition of
a Fibonacci link would be satisfied. We will verify potentially higher-ranked Fibonacci links
via their root sequences. The following special vector is key to simplifying our computations:

0= Qg+ 0+ Q. + Qg + 200,

It turns out that § € ® for the Coxeter system of type D, but this fact is not needed in what
follows. The next result tells us that § is fixed by all w e W (Dy).

Proposition 4.2. For all w e W (D), w(d) = 6.

Proof. Suppose w € W(Dy). We will first show that a(d) = b(6) = () = d(8) = z(5) = 4.
Observe that:

e a(0) = alag+ap+act+ag+20,) = =g+ ap+ Qe+ g+20, +20, = Qg+ ap+ e+ ag+20, =0

b(9) = b(ag+ap+ae+ag+20,) = Qg —Qp+ 0+ Qg +20, + 204 = Qg+ Qp+ Qe+ Qg+ 20, = 0

c(0) = clag+ap+ e+ ag+20,) = Qg+ — Qe+ g+ 20, + 20 = Qg+ 0+ Qe+ Qg+ 200, = §

d(0) = d(ag+ap+ac+ag+2a,) = Qg+ Qp+0e— Qg +20, +20g = g + Qp+ Qe+ Qg+ 200, = §

2(0) = x(Qg + ap+ e + Qg+ 200) = Qg+ Qp + Qp + Qi + Qe + A + Qg + 0 — 20, =
Qg + Oy + Qe + Qg — 200 + 40uy = (i + Qi + Qe + g + 200, = 0.

Therefore, since every w € W(D,) is a word constructed from the generating set S (D,) =
{a,b,c,d,z}, it follows that for all we W (D), w(d) = 9. O
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Now, let us consider an example of a potential Fibonacci link of rank 6 via the represen-
tation established earlier.

Example 4.3. Consider the expression g = rcrdrazbrcrdr for some group element in
W(D,). Then by Definition 1.9, we obtain the following root sequence:

o o wdrcxbr(ay) =ag+a, +0

o z(0yg) =g+ ay o wdrcxbra(og) = o + e+ g + 200

e zd(ay,) =«
() = o zdrcrbraz(ag) = e+ g+ oy +0

o zdr(a.) =+ ag+ay

o rdrcxbrard(ay) = ap+ e + g+ ay

o zdrc(ay) = e+,

o zdrcr(ap) = ap + e + g + 20, o vdrcxbrardr(o.) = ap+ . + oy
o zdrcxb(ay) = ap+ag+ a, o rdrcxbrardrc(a,) = oy, + 0.

Thus, by Proposition 1.10, since every entry in the root sequence of the expression
xcexdraxbrexdr is positive (highlighted in blue), the expression is reduced. It follows that
¢ is a Fibonacci link of rank 6. Note that since ¢4 is reduced, each ¢,, is also reduced for
1 <m <5, as described earlier.

We can recursively calculate root sequences of potentially higher-ranked Fibonacci links.
The root sequence for ¢, appears as the initial sequence of every ¢, with k < m. As we
move from ¢,, to ¢,,,;, we append two additional entries to the root sequence.

In order for us to proceed, we calculate the root sequence for ¢,,. Note that this root
sequence also captures the root sequence for ¢;, where 1 <7 < 23. Also, notice that the first
13 lines match the computations above.

1. a,

2. z(ag) = g+

3. zd(ay) = ay

4. xzdr(oe) = ae + g +
5. xdxc(ay) = ae + g

6. xdrcr(ap) = ap + Qe+ g + 200,
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

. xdrexb(ag) = ap + ag +
. xdzrexbr(ag) = ag+ a, + 0

. zdrexbra(ay) = g + e + ag + 20,

xdrcrbrar(og) = ac+ag+a, +0

xdxcxbraxd(ag) = ap + Qe + g + ay

xdrcrbraxdr(a.) = ap + e + ag + 20, + 0
xdzxcrbrardrce(ay) = o + 6

xdxcxbraxdrcex(ap) = g + ay + 20
xdrcrbrardrcrb(oy) = ag+ 0

xdrcrbrardrerbr(ay) = o + ag + g + 20
xdxcxbraxdrcrbra(ayg) = ae + ap + 0
xdxcxbraxdrcrbrazr(ag) = ap + e + g + 20, + 20
xdxcrbrardrcrbrard(a,) = ap + g+ o + 0
xdzxcrbrardrcrbrardr(a.) = ag + a, + 30
xdxcxbraxdrcrbrardre(ay) = ag + Qe + Qg + 20, + 0
xdrcrbraxdrcrbrardrcer(ay) = ae + g + g + 30
xdzxcrbrardrcrbrardrcexb(ay) = ap + Qe + g + 0 + 0
xdxcxbraxdrcrbrardrerbr(ag) = ap + e + g + 20, + 30
xdxcrbrardrcrbrardrcxbra(oy) = a, + 20.
xdzxcrbraxdrcrbrardrcrbrar(og) = og + oy + 49
xdxcxbraxdrcxbraxdrcxbraxd(a,) = ag + 20
xdxcxbraxdxcrbrardrcrbrardr(a.) = a. + ag + o, + 40

xdrcrbraxdrcrbrardrcrbrardre(ay,) = o + g + 20
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30. zdzrcrbraxdrcrbrardrcrbrardrcexr(ay) = ap + e + g + 20, + 40

31. xdrcrbraxdrcrbrardrcrbrardrcab(ay) = ap + g + g + 20

32. xdrcrbraxdrcrbrardrcrbrardrcabr(ag) = ag + ag + 50

33. zdrcxbrardrcrbraxdrcxbraxdrcabra(a,) = ag + e + g + 20, + 20

34. xdrcrbraxdrcrbrardrcrbrardrcrbrar(ag) = o + g + g + 59

35. xdrcrbraxdrcrbrardrcrbrardrcrbrard(oy) = ap + e + Qg + g + 20

36. zdrcrbrardrcxbraxdrcxbraxdrcrbrardr(a.) = ap + . + Qg + 20, + 50

37. xzdrcxbraxrdrcrbraxdrcxbraxdrcabraxdre(a,) = a, + 36

38. xdrcrbraxdrcrbrardrcrbrardrcrbrardrcex(ay) = ag + ay + 60

39. xdrcrbraxdrcrbrardrcrbrardrcabrardrcexb(ay) = ag + 30

40. zdrcrbraxdrcxbraxdrcxbraxdrcrbrardrerbr(ag,) = qe + g + ay + 60

41. zdzrcrbraxdrcrbrardrcrbrardrcrbrardrcxbra(oy) = e+ ay + 30

42. xdrcrbraxdrcrbrardrcrbrardrcrbrardrcxbrar(ag) = ap + e + g + 20, + 60

43. zdrcrbrardrcrbraxdrcxbraxdrcxbraxdrcxbraxd(ay) = ap + g + o, + 30

44. xdrcrbraxdrcrbrardrcrbrardrcxbrardrcxbrardr(a,) = ag + ag + 7

45. xdrcrbraxdrcrbrardrcrbrardrcxbrardrcxbrardrc(ay) = ag + e + g + 20, + 30
46. xdrcrbraxdrcrbrardxcrbrardrcxbrardrcxbrardrer(ap) = ae + g+ i + 70

47. xdrcxbrardrcxbraxdrcxbraxdrcrbrardrcrbrardrcrb(ay) = ap + ae + ag + i + 39
48. xdrcrbraxdrcrbrardxcrbrardrcxbrardrcxbrardrcerbr(ag,) = ap + e + g + 20, + 70

49. zdrcrbrardrcrbraxdrcxbraxdxcrbrardrcrbrardrcrbra(oy) = ay + 40

These computations were determined by hand and then verified with a Python program,
which was written with the help of Hugh Denoncourt and run in CoCalc (cocalc.com).
Since each entry is positive, by Proposition 1.10, ¢,, is in fact a Fibonacci link of rank 24.
Hence, in the Coxeter system of type 54, we know that Fibonacci links exist up to at least
rank 24 of the form ¢;, where 1 <i < 24. Therefore, by Theorem 3.12, we know that we have
Fibonacci links whose respective braid graphs are isomorphic to Fibonacci cubes up to Foy.
We list braid graphs for Fibonacci links up to rank 6 in Figure 3.3.
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Proposition 4.4. For all 7 > 1, ¢, is reduced.

Proof. We first note that by previous computations, ¢, is reduced for all 1 <7 <24. We will
consider the form ¢ = 12k. Now, define

P1o = varbrcrdrarbrcrdraxbrexd,

and
Py, = rarbrcrdraxbrcrdrarbrcrdrarbrcxdrarbrcrdrarbrexd.

Note that ©,, can be interpreted the Fibonacci link of rank 12, ¢,,, with the most right
generator removed, i.e., P, = 5. Similarly, we have @,,x = ¢,,. Next, we utilize our
Python code to compute ($,)~! and (($@,5)?)~! acting on our simple roots, «;, where i €
{a,b,c,d,z}. We obtain:

o (P12) Mag) =-3a, — 4oy — 4o, —dag — 8oy, = g — 46

(9/512)71(0%) = =20, — g — 20 — 2004 — 4oy = o — 20

(P12) H(ae) =

(@15) Hag) =200 + 20 + 20 + 3arg + by = g + 20

(P12) () = 2004 + 200 + 2000 + 200g + Havy = Qi + 20

(9’524)_1(6%) = —Tag — 8y — 8ar. — 8ag — 160y, = ay — 89

(Pos) M) = —4ay — 3ay, — 4o — 4og — 8oy, = ayy — 40

(P24) (ae) =

(Boy) Hag) = dag +day, + da + Hog + 8a, = g + 46

o (Do) Hay) =4, +4ay + dae + dag + 9, = a + 40

As expected, (B12) (), (P12) (), (Pas) (), and (P,4)7'(ap) are negative roots,
while the others are positive.

Now, let us compute higher values of ¢,. We need 24 intermediate results to handle
different size prefixes. For each k > 1, note that @9, = (P15)*z and (($15)%)7! = (Boy) 7.
We compute the tail of the root sequence for ¢; = 15,1y by handling cases of when £ is
odd versus when k is even. For both cases, we will provide details on a few non-trivial size
prefixes, and then provide a list of values. Along the way, we will utilize the values of (@,,)~!
and (($,,)?)"! acting on simple roots given above.
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First, assume k is odd. Then k = 2n + 1 for some n € Zyy. We claim that we obtain
the following tail of the root sequence for ¢; = Py¢,1). We list the odd cases of the 24
intermediate prefix sizes below.

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

((P12) HE(ap) = az + (4m +2)6 = o, (mod §)

((P12) DEx(ag) = ag+a, + (8m+4)d = ag + a, (mod §)

- ((@B19) DHrzd(ay) = ag+ (4m +2)6 = ag (mod 0)

((@B12) Drxdr(ae) = ac+ ag+a, + (8m+4)d = a,. + ag + a, (mod )

((P12) Hradre(oy) = ac+ oy + (4m +2)0 = a. + o, (mod 9)

((@19) Vrzdrcr(ay) = ay + e + g + 200, + (8m +4)6 = ay + e + g + 20, (mod 6)
((@12) ) rxdreab(ay) = ap + g+ az + (Am +2)0 = oy + g + o, (mod )

((P12) Hradreabr(oy) = ag+ oy + (8m +5)0 = ag + o, (mod 0)

((P12) HExdrerbra(ay) = ag + e + ag + 20, + (4m +2)0 = o, + a + g + 2, (mod )
((@12) HExdrerbrar(ag) = ae + ag+ ay, + (8m +5)0 = a, + ag + a, (mod 0)

(@) V) rxdrcabrazd(oy) = ap + e + g + g + (dm +2)0 = apy + e + g + a, (mod §)
((@19) D rrdrcrbrardr (o) = ap+ae+ag+20, + (8m+5)0 = ap+ e + g + 2ar, (mod )
((@15) DH*rdrcrbrardrc(ay) = ag + (4m + 3)d = o, (mod 9).

((@12) HFxdrexbraxdrer(ay) = ag + ap + (8m +6)0 = g + o, (mod )

((@15) O *rdrcrbrardrcrb(ay) = ag+ (4m +3)d = ag (mod 0)

((@19) D*rdrcrbrardrcerbr(ag) = ae+ ag+ oz + (8m+6)0 = o + ag + a, (mod )
((@15) ) rrdrcrbrardrcrbra(ay) = ae + ag + (4m +3)d = a. + ag (mod §)

((@15) O rrdrcrbrardrcrbrar(ag) = ap + e+ g+ 20, + (8m +6)0 = ap + a + g + 20,

(mod 9)
((@15) VO *rdrcrbrardrcrbrard(ay) = ap + ag + g + (4m +3)0 = ap + ag + o, (mod )

((@19) O*rdrcrbrardrcrbrardr(a.) = ag+ oz + (8m +7)0 = ag + a, (mod )
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21. ((P15) HFedrcxbrardrcebraxdrc(ay) = ag+et+ag+2a,+(4m+3)0 = ag+ . +ag+2a;,

(mod ¢)
22. ((B1) HExdrcrbraxdrcrbrardrcr(ay) = aet+ag+a,+(8m+7)d = a.+ag+a, (mod §)

23. ((P15) HFxdrcrbrardrcrbraxdrcab(a,) = ap+ae+ag+a,+(4m+3)0 = ap+a.+ag+a,
(mod 9)

24. ((P15) HFrdrcrbrardrcabraxdrcabr(a,) = ap + e + ag + 20, + (8m +7)0 = ap + . +
ag + 2, (mod §)

Each computation follows from our earlier work. We include details for lines 2 and 3 below,
i.e., prefixes of size 1 and 2. We see that

(B12) ) z(aq) = (@12) )" 2 (ca)
= ((9312)_1)2n((¢12)_1)1x(ad)
= ((9’524)71)71((@12)71)55(0%)
= ((P22) )" (B12) ) + )
= ((@24)_1)11(0%1 +20 + oy +20)
= ((9/524)_1)n(ad + g +40)
=ag+4nd + oy +4nd + 49
=ag+a,+(8n+4)0

=ag+a,; (mod )
while

(B12) ) rwd(ar) = ((B12))* wd(as)
= ((@12)_1)QH((S’512)_1)1xd(0‘z)
= ((@24)71)71((9’512)71)9““0%)
= ((B20) )" ((@12) Ha(aa + )
= ((@24)_1)%(‘7512)_1)(0%)
= ((P24)™)" (a +26)
= ((@aa) )" (a) + ((B24)7")"(20)
=g +4nd + 20
=ag+ (4n+2)0
=ay (mod 9).
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Now, assume k is even. Then k = 2n for some n € Zs;. We claim that we obtain
the following tail of the root sequence for ¢; = @5;,1). We list the even cases of the 24
intermediate prefix sizes below.

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

((@12) ) (az) = oz +2md = o, (mod §)

((P12))Fz(aa) = ag+ az +8md = ag+a, (mod J)

- ((@B19) Drzd(ay) = ag + 4md = ayg (mod 0)

((P12) ) Fxdr(a) = e + g + ap + 8md = e + g + @, (mod 0)

((@19) HFrdre(ay) = ae + ag +4md = a, + a, (mod 9)

((B12) HExdrer(ap) = ap + e + ag + 20, + 8md = ay + e + ag + 20, (mod §)
((P12) Hradreab(ay,) = ap + g + o +4mo = ap + g + o, (mod 0)

((P12) Hradrcabr(oy) = ag+ oy + (8m +1)0 = ag + o, (mod 0)

((P12) HExdrerbra(ay) = ag + e + ag + 20, +4md = g + a + ag + 20, (mod 0)
((B12) HExdrcrbrar(ag) = ae + ag+a, + (8m+1)0 = a, + ag + a, (mod 0)

((@15) OHrrdrcrbrard(ay) = ap + ae + ag + g + 4md = ag + . + ag + o, (mod 6)
((@19) O *rdrcrbrardr(a.) = ap+ae+ag+2a,+ (8m+1)0 = ap+ . + g + 2ar, (mod )
(@) OH*rdrcrbrardrc(ay) = ag + (4m+ 1) = o, (mod 9).

(@) HExdrexbraxdrcr(ay) = ag + g + (8m +2)0 = g + o, (mod §)

((@15) O *rdrcrbrardrcrb(ay) = ag+ (4m +1)d = ag (mod 0)

((@19) O*rdrcrbrardrcrbr(ag) = ae + ag+ oz + (8m +2)0 = a. + ag + o, (mod )
((@15) ) rrdrcrbrardrcrbra(ay) = ae + ag + (4m +1)d = a. + ag (mod §)

((@15) O rrdrcrbrardrcrbrar(ag) = ap + e+ g+ 20, + (8m +2)0 = ap + ae + g + 201,

(mod 9)
((@15) O *rdrcrbrardrcrbrard(ay) = ap + ag + g, + (dm +1)0 = ap + ag + o, (mod )

((@19) O*rdrcrbrardrcrbrardr(a.) = ag+ oz + (8m +3)0 = ag + o, (mod )
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21. ((P15) HFedrcxbrardrcebraxdrc(ay) = ag+et+ag+2a,+(4m+1)0 = ag+a.+ag+2a;,

(mod ¢)
22. ((@1) HExdrcrbraxdrcrbrardrcr(ap) = ae+ag+a,+(8m+3)d = a.+ag+a, (mod §)

23. ((P15) HFxdrcrbrardrcrbraxdrcab(a,) = ap+ac+ag+a,+(4m+1)0 = ap+ae.+ag+a,

(mod §)
24. ((@19) " HFxdrcrbrardrcrbrardrcabr(ag) = ap + e + ag + 20, + (8m + 3)9

As with the odd case, we include details for lines 2 and 3 below, which correspond to prefix
of sizes 1 and 2, respectively. Observe that

((@12)_1)k$(ad) = ((@12)_1)2nx(0‘d)
= ((P24) ™) ()
= ((B20) )" (aa + y)
= ((P24) )" (@) + (B20) )" ()
=g +4nd + oy, + 4nd
=g+ ay + 8nd

=ag+a, (mod o)
while,

((@12)_1)]%51(041) = ((‘7512)_1)2nxd(04r)
= ((Paa) ™) "a(aa + o)
= ((B20))" ()

ag +4nd

ag (mod 0).

Note that if we were to consider a prefix of size 25, we would have
((B1y) HFzdrcrbrardrcrbrardrcrbra(oy) = (@) ) (@)t =, (mod 6).

This case would match our computation on line 1 but with a change to the coefficient on
0. The rest of the root sequence behaves similarly. We see that in either case of when £ is
odd or even, all roots are positive. Thus, by Proposition 1.10, ;4 is reduced for any k.
Therefore, since every ¢; is a consecutive subexpression of some ¢4, it follows that ¢, is
reduced for all 7 > 1.

0
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We identify a pattern in the root sequence for ((@;5)~')**! modulo §. This pattern is
represented by the 6 distinct colors in each list of when k is odd or even. Every time our
prefix size increases by 6, we repeat root values modulo ¢ in two forms. If we are feeding an
expression «,, represented by the blue, black, and orange colors, we repeat the same root
values modulo §. If we are feeding an expression «;, where i € {a,b, ¢, d}, then the expressions
alternate between two distinct root values, represented by the colors red, , and purple.
For example, starting with a prefix of size 0 (highlighted in red), every time we increase our
prefix by 6, we alternate between the root values «, and «ay + oy + o, modulo §. However,
if we consider the initial prefix of size 1, every time we increase our prefix by 6, we repeat
the root value oy + o, modulo §. Regardless of whether £ is odd or even, we have the same
pattern.

Since ¢, is reduced for all 7 > 1, ¢, is a Fibonacci link of rank 7 such that ¢ > 1, i.e., in
the Coxeter system of type Dy, Fibonacci links exist for any rank size. The previous result
together with Proposition 3.7 immediately implies the following.

Corollary 4.5. In the simply-laced triangle-free Coxeter system of type Dy, there exists a
Fibonacci link of rank m for all m > 1.

Suppose (W, S) is a simply-laced triangle-free Coxeter system whose Coxeter graph has
the Coxeter system of type D, as a subgraph. Since each @, is reduced, after relabeling
generators, the corresponding expression is reduced in W. This yields the following, which
is the main result of this thesis.

Theorem 4.6. If (W, S) is a simply-laced Coxeter system whose Coxeter graph has a vertex
of degree 4, then for each m > 1, there exists a Fibonacci link of rank m whose braid graph
is isomorphic to the Fibonacci cube F,,.

Proposition 3.7 provides us with a characterization of the braid graphs for Fibonacci
links in simply-laced triangle-free Coxeter systems, while Theorem 4.6 indicates a class of
Coxeter systems for which every possible Fibonacci cube is realized as a braid graph for
some Fibonacci link. Moreover, since we know that there exists an isomorphism between
the braid graph of a Fibonacci link of rank m and F,,, as we increase rank from a Fibonacci
link of rank m to rank m + 1, it turns out that the corresponding braid graph is composed
of the braid graphs of a Fibonacci link of rank m and m — 1, by “gluing” the braid graphs
together, using the recursive structure of Fibonacci cubes. Earlier, we explained how we go
from a Fibonacci link of rank m, denoted ¢,,, to a rank of m +1 via appending xt,,.1 to the
left of ¢,,. Appending xt,,,; functions as gluing the braid graphs of ¢,, ; and ¢,, to obtain
the braid graph of ¢,,,,. Figure 4.2 gives examples of this gluing process for Fibonacci links
up to rank 6. We use the symbol @ to represent the gluing of the two previous braid graphs.
We also represent how these pieces are glued together via dashed lines.
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The Fibonacci cube is not the only interesting graph that arises as the braid graph for a
reduced expression. For instance, the matchable Lucas cubes introduced in [17] can be found
in the Coxeter system of type Dj as seen in the following example. The matchable Lucas
cubes are very similar to the Fibonacci cubes, for example, the number of vertices in the
nth matchable Lucas cube is equal to the nth number L, in the sequence of Lucas numbers
defined by L,, = L,,_1 + L,,_o with initial conditions Ly =2 and L; = 1.

Example 4.7. Consider the reduced expression 4534313234313 for w € W (Ds) from Ex-
ample 3.8. The braid graph, depicted in Figure 4.3(c), is isomorphic to the 6th matchable
Lucas cube as introduced in [17]. In fact, it is not hard to see that the braid graph is a “glu-
ing together” (depicted with dashed edges) of the braid graphs for the reduced expressions
45343132343 and 453431323. The braid graph for 45343132343 is shown in Figure 4.3(b)
and is isomorphic to the 5th matachable Lucas cube, while the braid graph for 453431323
in Figure 4.3(a) is isomorphic to the 4th matachable Lucas cube. Moreover, observe that
4534313234313 has 34313234313 as a consecutive subword, which is a Fibonacci link. We
can think of the original reduced expression as a “type A extension” of a Fibonacci link.
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e
(a) B(zdz) = Fy (b) B(zdx) = Fo (¢) B(xbxcxdr) = Fs

@ = -

(d) B(zaxbxecxdr) = Fy

(f) B(zcxdrazbrexdr) = Fg

Figure 4.2: Braids graphs for several Fibonacci links in the Coxeter system of type Dy.

37



(a) B(453431323) (b) B(45343132343) (c) B(4534313234313)

Figure 4.3: Braid graphs for the reduced expressions in Example 4.7.
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Chapter 5

Conclusion

The relationship among the reduced expressions in a fixed braid class can be encoded in a
graph. We define the braid graph for a reduced expression to be the graph with vertex set
equal to the corresponding braid class, where two vertices are connected by an edge if and
only if the corresponding reduced expressions are related via a single braid move. In [1], the
authors proved that in simply-laced Coxeter systems every reduced expression has a unique
factorization into links, which then yields a decomposition of the corresponding braid graph
into a box product of the braid graphs for each link factor. Moreover, the authors proved
that for a special class of links, called Fibonacci links, the corresponding braid graph is
isomorphic to a Fibonacci cube graph. In this thesis, we proved that for any simply-laced
Coxeter system whose corresponding Coxeter graph has a vertex of degree 4, there exist
infinitely many Fibonacci links. In particular, we proved that for each m > 1, there exists a
Fibonacci link of rank m whose braid graph is isomorphic to the Fibonacci cube F,,.
We conclude by presenting a few open problems:

e Characterize Fibonacci links in simply-laced Coxeter systems in which each vertex of
the Coxeter graph has degree less than or equal to 3.

e Characterize reduced expressions whose braid graphs are realized as generalized Lucas
cubes in simply-laced Coxeter systems.

e Provide a classification of braid graphs for links in arbitrary simply-laced Coxeter
systems (e.g., type A,).

e Generalize the notions of braid shadow, link, and braid chain to arbitrary Coxeter
systems and obtain analogous results to the simply-laced case.
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