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ABSTRACT

PATTERN AVOIDANCE IN CAYLEY PERMUTATIONS

HANNAH GOLAB

Any permutation of n may be written in one-line notation as a sequence of en-

tries representing the result of applying the permutation to the sequence 12 · · ·n.

If p and q are two permutations, then p is said to contain q as a pattern if some

subsequence of the entries of p has the same relative order as all of the entries of q.

If p does not contain a pattern q, then p is said to avoid q. One of the first notable

results in the field of permutation patterns was obtained by MacMahon in 1915

when he proved that the ubiquitous Catalan numbers count the 123-avoiding

permutations. The study of permutation patterns began receiving focused atten-

tion following Knuth’s introduction of stack-sorting in 1968. Knuth proved that

a permutation can be sorted by a stack if and only if it avoids the pattern 231

and that the Catalan numbers also enumerate the stack-sortable permutations.

In the subsequent years, the notion of pattern avoidance has been extended to

numerous combinatorial objects, including multiset permutations, set partitions,

ordered set partitions, compositions, and modified ascent sequences. In this the-

sis, we study pattern avoidance in the context of Cayley permutations, which

were introduced by Mor and Fraenkel in 1983. A Cayley permutation is a finite

sequence of positive integers that include at least one copy of each integer be-

tween one and its maximum value. When possible we will take a combinatorial

species-first approach to enumerating Cayley permutations that avoid patterns of

length two, pairs of patterns of length two, patterns of length three, and pairs of
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patterns of length three with the goal of providing species, exponential generat-

ing functions, and counting formulas. We also briefly study pattern avoidance in

a special class of Cayley permutations known as primitive Cayley permutations.

Throughout the thesis, we include several conjectures and open problems. The

majority of the results of this thesis are new and were obtained in collaboration

with G. Cerbai, A. Claesson, and my advisor D.C. Ernst.
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Chapter 1

Introduction to combinatorial species

The goal of this thesis is to analyze certain collections of Cayley permutations. We will often
use combinatorial species to derive exponential generating functions for these subsets, allow-
ing us to enumerate them and establish bijections involving the corresponding structures.

In this chapter, we mimic the development in [1] and [4]. We utilize two different types of
species, namely B-species and L-species. We will first introduce the more general B-species.

1.1 B-species

We will look at an example involving graphs to build intuition. First, recall that an isomor-
phism of simple graphs (U,E) and (V,E ′) is a bijection σ : U → V that preserves adjacency
relations. This means {x, y} ∈ E if and only if {σ(x), σ(y)} ∈ E ′.

Example 1.1. Figure 1.1 depicts a simple graph with vertex set U = {a, b, c, d, e}.

c

b

d

a

e

Figure 1.1: An example of a simple graph.

In general, a species defines both a class of (labeled) combinatorial objects and how those
objects are impacted by relabeling. This mechanism of relabeling is called the transport of
structure.

Given a finite set U , define G[U ] to be the set of simple graphs on U . For a bijection σ :
U → V , the transport of structure is G[σ] : G[U ] → G[V ] given by G[σ](U,E) = (V, σ(E)).
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Example 1.2. Let U = {a, b, c, d, e}, V = {1, 2, 3, 4, 5}, and define σ = (a b c d e
3 1 4 5 2). Then

Figure 1.2 illustrates the behavior of the corresponding transport of structure on the graph
from Example 1.1.

c

b

d

a

e4

1

5

3

2

G[σ]

Figure 1.2: Transport of structure for a graph.

In terms of transport of structure, two graphs S ∈ G[U ] and T ∈ G[V ] are isomorphic
if there exists a bijection σ : U → V such that G[σ](S) = T . It can be verified that for all
bijections σ : U → V and τ : V → W between vertex sets, the following hold:

• G[σ ◦ τ ] = G[σ] ◦G[τ ];

• G[idU ] = idG[U ],

where idU is the identity map on U and idG[U ] is the identity map on G[U ].
A B-species (or simply species) F is a rule that produces

(i) for each finite set U , a finite set F [U ];

(ii) for each bijection σ : U → V , a function F [σ] : F [U ] → F [V ],

where F [σ ◦ τ ] = F [σ] ◦ F [τ ] for all bijections σ : U → V , τ : V → W , and F [idU ] = idF [U ]

for the identity map idU : U → U . These are visually represented in Figure 1.3.
An element s ∈ F [U ] is called an F -structure on U and the function F [σ] is called the

transport of F -structures along σ, or simply transport of structure if the context is clear.
Two F -structures s ∈ F [U ] and t ∈ F [V ] are isomorphic, denoted s ∼ t, if there exists a
bijection σ : U → V such that F [σ](s) = t.

In the language of category theory, a B-species is a functor F : B → B, where B is the
category of sets with bijective functions as morphisms.

We have already seen that G is the species of finite simple graphs. Below we define several
species that will be utilized throughout this thesis. For many of these, we will elaborate on
the corresponding F -structure and transport of structure in upcoming examples.
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F [U ]

U

F [V ]

V W

F [W ]

F

σ

F

F [σ]

τ

F

F [τ ]

τ ◦ σ

F [τ ◦ σ] = F [τ ] ◦ F [σ]

(a)

F [U ]

U

F [U ]

U

F F

idU

F

F [τ ] ◦ F [σ] = F [τ ◦ σ]

F [idU ] = idF [U ]

(b)

Figure 1.3: Rules for transport of structure.

(a) E: species of sets;

(b) E+: species of nonempty sets;

(c) En: species of sets of cardinality n;

(d) Eeven: species of sets of even cardinality;

(e) Eodd: species of sets of odd cardinality;

(f) X: species of singletons;

(g) 1: species of the characteristic of the empty set;

(h) L: species of linear orders;

(i) L+: species of nonempty linear orders;

(j) S: species of permutations;

(k) Par: species of set partitions;

(l) Bal: species of ballots (i.e., ordered set partitions);

(m) Der: species of derangements.

Throughout this thesis, we define [n] := {1, 2, . . . , n} for ease of notation.
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Example 1.3. We describe the E-structures and transport of structure for the species of
sets E. The E-structures are defined by E[U ] := {U} and the transport of structure for a
bijection σ : U → V is given by E[σ](U) = V . Note that |E[U ]| = 1 for all finite sets U .

Example 1.4. We will address the L-structures and transport of structure for the species of
linear orders L. Recall that a linear order of a set U with |U | = n is a bijection f : [n] → U ,
which we may represent using 1-line notation: f(1) · · · f(n). The L-structures are defined
by L[U ] := {f : [n] → U | f bijection} such that |U | = n. The transport of structure for a

bijection σ : U → V is given by L[σ](f) = σ ◦ f = σ(f(1)) · · · σ(f(n)) since [n]
f→ U

σ→ V
is a bijection. Note that there are n! linear orders on U when |U | = n, which implies that
|L[U ]| = n!.

Example 1.5. We now describe the S-structures and transport of structure for the species of
permutations S. The S-structures are defined by S[U ] := {f : U → U | f bijection} while the
corresponding transport of structure for a bijection σ : U → V is given by S[σ](f) = σ◦f◦σ−1

since V
σ−1

→ U
f→ U

σ→ V is a bijection. This reflects the fact that conjugation preserves the
cycle type of a permutation. Note that |S[U ]| = n! when |U | = n.

To aid in the enumeration of F -structures, we associate an exponential generating func-
tion, denoted by F (x). For all finite sets U , the number of F -structures on U depends only
on the number of elements of U instead of the specific elements in U . For ease of notation,
we use F [n] := F [[n]]. The cardinalities |F [U ]| are characterized by the sequence of values,
fn := |F [n]| for n ≥ 0.

We define the exponential generating function of the species F to be the formal power
series

F (x) :=
∑
n≥0

fn
xn

n!
,

and the corresponding ordinary generating function is defined via

F̂ (x) :=
∑
n≥0

fnx
n.

The exponential generating functions associated with some of the species introduced
above are provided below. These results appear in [1].

Proposition 1.6. white text

(a) E(x) = ex;

(b) E+(x) = ex − 1;

(c) En(x) =
xn

n!
;
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(d) Eeven(x) = cosh(x);

(e) Eodd = sinh(x);

(f) X(x) = x;

(g) 1(x) = 1;

(h) L(x) =
1

1− x
;

(i) L+(x) =
x

1− x
;

(j) S(x) =
1

1− x
;

(k) Par(x) = ee
x−1;

(l) Bal(x) =
1

2− ex
;

(m) Der(x) =
e−x

1− x
.

We now look at examples of species together with their corresponding exponential gen-
erating functions.

Example 1.7. Recall the species L (linear orders) and S (permutations) from Examples 1.4
and 1.5. Despite L and S being different species, it should come as no surprise that they
have the same exponential generating function. Since |L[n]| = n! = |S[n]|, we have

S(x) = L(x) =
∑
n≥0

|L[n]|x
n

n!
=
∑
n≥0

n!
xn

n!
=
∑
n≥0

xn =
1

1− x
.

The previous example illustrates that we may have F (x) = G(x) despite F and G being
different species.

Example 1.8. We define the 1-structures for the species 1, the characteristic of the empty
set. The 1-structures are given by

1[U ] :=

{
{U}, U = ∅
∅, otherwise.

It follows that 1(x) = 1.

5



F [V ]

F [U ]

G[V ]

G[U ]

F [σ]

αU

G[σ]

αV

Figure 1.4: Commutative diagram for isomorphic species.

Example 1.9. The E+-structures for the species E+ of nonempty sets are given by

E+[U ] :=

{
{U}, U ̸= ∅
∅, U = ∅.

It follows that E+(x) =
∑
n≥1

xn

n!
= ex − 1.

A natural question to ask is when two species are considered the same combinatorially.
Species F and G are called equipotent, denoted F ≡ G, if and only if there is the same number
of F -structures as G-structures for each |U | = n. The following obvious result appears in [1].

Proposition 1.10. For B-species F and G, F ≡ G if and only if F (x) = G(x).

Species F and G are isomorphic, written F ∼= G, if there is a family of bijections αU :
F [U ] → G[U ] that satisfies: for any bijection σ : U → V between two finite sets, the diagram
in Figure 1.4 commutes. That is, αV ◦F [σ] = G[σ] ◦αU . In the language of category theory,
F ∼= G if and only if there exists a natural isomorphism between the functors F and G. For
ease of notation, we write F = G as species when F ∼= G. This is standard in the literature.
The next result appears in [1].

Proposition 1.11. For B-species F and G, if F = G, then F (x) = G(x).

It is important to note that the converse of the previous proposition is not true.

Example 1.12. Recall Examples 1.4 and 1.5 with the species L (linear orders) and S
(permutations). These two species are not isomorphic even though they are equipotent and
their exponential generating functions are equal.

One can build new species with operations on previously known species. The first op-
eration we will explore is addition. For species F and G, an (F + G)-structure is either
an F -structure or G-structure. That is, (F + G)[U ] := F [U ]

⊔
G[U ] and for all bijections

σ : U → V ,

(F +G)[σ](s) :=

{
F [σ](s), s ∈ F [U ]

G[σ](s), s ∈ G[U ].

6



It turns out that (F +G)(x) = F (x) +G(x).
We now look at an example of the addition of known species.

Example 1.13. It follows from Examples 1.8 and 1.9 that the species of sets is E = 1+E+

since every set is either an empty set or a nonempty set. In terms of the exponential
generating functions, we have

E(x) = ex = 1 +
∑
n≥1

xn

n!
= 1(x) + E+(x),

as expected.

Next we define the multiplication of species and provide an example. For species F and
G, we define an (F ·G)-structure on a set U to be a pair (s, t) such that s is an F -structure
on a subset U1 ∈ U and t is a G-structure on U2 = U\U1. Formally,

(F ·G)[U ] :=
⊔

(U1,U2)

F [U1]×G[U2]

with U = U1 ⊔ U2, and the transport of structure is defined by

(F ·G)[σ](s, t) := (F [σ1](s), G[σ2](t)),

where σ1 = σ|U1 and σ2 = σ|U2 . It is also true that (F · G)(x) = F (x) · G(x). While the
addition and multiplication of species are associative and commutative up to isomorphism,
F ·G is not equal to G · F , in general.

We now look at an example.

Example 1.14. For the singleton species X = E1, we have

X[U ] :=

{
{U}, |U | = 1

∅, otherwise.

It follows that X(x) = E1(x) = x. The claim is that for the species of linear orders, we have
L = 1 +X · L. Combinatorially, a linear order is either empty or consists of a first element
followed by its remaining elements. In terms of exponential generating functions, we have

1 + x · L(x) = 1 +
x

1− x
=

1− x+ x

1− x
=

1

1− x
= L(x).

Now we define the composition of species. An (F ◦G)-structure is a generalized partition
in which each block of a partition carries a G-structure and blocks are structured by F .
Formally, if F and G are two species such that G[∅] = ∅, we define

(F ◦G)[U ] :=
⊔

β={β1,...,βk}

F [β]×G[β1]× · · ·G[βk],

where β = {β1, . . . , βk} is a partition of U . The details on the transport of structure can be
found in Chapter 1 of [1]. It is also true that (F ◦G)(x) = F (G(x)).

7



Example 1.15. We will now look at the species of ballots. We will encounter ballots
throughout this thesis and make connections to our topic of interest, Cayley permutations,
in Chapter 2. A ballot on a finite set U is an ordered set partition of U , denoted by
(B1, B2, . . . , Bk), where each Bi is a nonempty subset of U , Bi ∩ Bj ̸= ∅ for i ̸= j, and⋃k

i=1Bi = U . Each Bi is referred to as a block. The collection of ballots on U is denoted by
Bal[U ]. The species Bal has structures Bal[U ] and for a bijection σ : U → V , the transport
of structure Bal[σ] : Bal[U ] → Bal[V ] is given by

Bal[σ](B1, . . . , Bk) = (σ(B1), . . . , σ(Bk)).

If U = [n], we write Baln := Bal[n]. Since every ordered set partition is a linear order of
nonempty sets, it follows that Bal = L(E+). We see that

Bal(x) = L(E+(x)) =
1

1− (ex − 1)
=

1

2− ex
.

Next, we look at derivatives of species. Recall that for a species F ,

F (x) =
∑
n≥0

fn
xn

n!
.

This implies that

d

dx
[F (x)] =

∑
n≥0

n · fn
xn−1

n!

=
∑
n≥1

fn
xn−1

(n− 1)!

=
∑
n≥0

fn+1
xn

n!
.

For G(x) =
∑
n≥0

gn
xn

n!
, we have G(x) = F ′(x) if and only if gn = fn+1 for n ≥ 0. This

motivates the following. The derivative of a species F , denoted F ′, is defined via

F ′[U ] := F [U ⊔ {⋆}]

and for a bijective map σ : U → V, we define F ′[σ] := F [τ ], where

τ [x] =

{
σ(x), x ∈ U

⋆, x = ⋆.

It turns out that in terms of exponential generating functions, we have F ′(x) = d
dx
[F (x)].

8



Example 1.16. To illustrate the derivative of a species, we look at the derivative of the
species of linear orders. We claim that L′ = L2. Combinatorially, each L′-structure is simply
an L-structure preceding ⋆ followed by another L-structure. That is, the derivative of a linear
order just separates the linear order into two linearly ordered components. More concretely,
consider U = [6] and w = 41 ⋆ 5263 ∈ L′[U ]. This would transfer to L2[U ] as an ordered pair
(s, t) where s = 41 and t = 5263. We see that

L′(x) =
d

dx

[
1

1− x

]
=

1

(1− x)2
= L2(x).

The last operation we will define for B-species is pointing. For a species F , we define the
species F •, called F -pointed, via

F •[U ] := F [U ]× U.

That is, an F •-structure on U is a pair (s, u), where s is an F -structure on U and u ∈ U
is a distinguished element that we can think of as being “pointed at”. The operations of
pointing and derivation are related by

F • = X · F ′,

where the distinguished element in the F •-structure is replaced by ⋆. Further, we have
|F •[n]| = n|F [n]|, which implies that

F •(x) =
∑
n≥0

n · fn
xn

n!
= x

d

dx
[F (x)] = x · F ′(x).

For more details on the transport of structure for F •, see Chapter 1 of [1]. We will see an
example of this operation later in this thesis.

Above we stated how each operation on species translated to the corresponding exponen-
tial generating functions. We collect these results from [1] below.

Proposition 1.17. If F and G are species, then

(a) (F +G)(x) = F (x) +G(x);

(b) (F ·G)(x) = F (x) ·G(x);

(c) (F ◦G)(x) = F (G(x));

(d) F ′(x) = d
dx
[F (x)];

(e) F •(x) = x d
dx
[F (x)].

9



1.2 L-species

Now we look at L-species, a specialization of B-species. The key difference is that for L-
species, the underlying sets are totally ordered. Recall that a finite totally ordered set is a
pair l = (U,⪯), where U is a finite set and ⪯ is a total order on U . In other words, ⪯ is an
L-structure on U . We write u ≺ v if u ⪯ v and u ̸= v.

The (ordinary) sum of two totally ordered sets l1 = (U1,⪯1) and l2 = (U2,⪯2) is the
unordered set U = U1 ⊔ U2 that results from taking the disjoint union of U1 and U2. The
ordinal sum of l1 and l2 is the totally ordered set l = (U,⪯), denoted by l = l1 ⊕ l2, where

u ≺l v ⇐⇒


u ≺1 v,when u, v ∈ U1,

u ∈ U1 and v ∈ U2,

u ≺2 v,when u, v ∈ U2.

In other words, l respects l1 and l2 and all elements of l1 are smaller than the elements of l2.
The totally ordered set obtained by adding a new minimum element to l is denoted by 1⊕ l.

A function f : l1 → l2 between two totally ordered sets l1 and l2 is (strict) order preserving
if u ≺l1 v implies f(u) ≺l2 f(v) for all u and v in l1. Note that every order preserving map
is injective but not necessarily surjective. If f : l1 → l2 is an order preserving bijection, then
f is the unique order preserving bijection between l1 and l2.

An L-species is a rule F that associates

(i) for each finite totally ordered set l, a finite set F [l];

(ii) for each order preserving bijection σ : l1 → l2, a function

F [σ] : F [l1] → F [l2],

where F [β ◦ σ] = F [β] ◦ F [σ] for all order preserving bijections β : U → V , σ : V → W and
F [idl] = idF [l] for the identity map idU : U → U .

An element s ∈ F [l] is said to be an F-structure on l, and the function F [σ] is the
transport of F-structures along σ.

Two L-species F and G are isomorphic if there is a family of bijections

αl : F [l] → G[l],

for each totally ordered set l that commutes with the transports of structures. This means
that for any order preserving bijection σ : l1 → l2, one should have

G[σ] ◦ αl1 = αl2 ◦ F [σ].

10



As with B-species, it is standard to write F = G to indicate that F and G are isomorphic
as L-species.

Any B-species F produces an L-species, also denoted by F . This species is defined by
setting

F [U,⪯] = F [U ],

for any totally ordered set l = (U,⪯), where the transport of structure is obtained by
restriction to order preserving bijections.

For an L-species F , the associated exponential generating function is defined by

F (x) :=
∑
n≥0

fn
xn

n!
,

where fn = |F [n]| and the corresponding ordinary generating function is defined via

F̂ (x) :=
∑
n≥0

fnx
n.

Note that if F is a B-species, the F -structures that we obtain are identical regardless of
whether we interpret F as a B-species or L-species. This implies the exponential generating
function is the same regardless of whether F is a B-species or L-species.

In contrast to B-species, two L-species are isomorphic if and only if their exponential
generating functions agree as shown in [1].

Proposition 1.18. For L-species, F = G if and only if F (x) = G(x).

All of the B-species defined earlier have the same name when interpreted as L-species.
Moreover, it is possible for two nonisomorphic B-species to become isomorphic when looked
at as L-species.

Example 1.19. As B-species, L and S are not isomorphic but rather equipotent. However,
as L-species, L = S. In this case, f ∈ S[n] naturally becomes the word f(1)f(2) · · · f(n) ∈
L[n].

Operations on B-species can be extended to L-species. One can verify the operations
on L-species satisfy the properties of associativity, commutativity, and linearity up to iso-
morphism, in analogy with formal power series. New operations such as integration, ordinal
product, and convolution also become possible. For L-species F and G and a finite totally
ordered set l = (U,⪯), we define the following:

• Sum F +G:
(F +G)[l] = F [l] ⊔G[l].

• Product F ·G:
(F ·G)[l] =

∑
l1+l2=l

F [l1]×G[l2].
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• Derivative F ′ = d
dx
F (X):

F ′[l] = F [1⊕ l].

• Integral
∫ X

0
F (T )dT : (∫

F

)
[l] =

{
∅, l = ∅
F [l\{min l}], l ̸= ∅.

• Ordinal product F ⊙G:

(F ⊙G)[l] =
∑

l=l1⊕l2

F [l1]×G[l2].

• Convolution F ∗G:
F ∗G = F ⊙X ⊙G.

In contrast to the product structure, an ordinal product structure (F ⊙G)[l] is obtained
by splitting l into an initial segment l1 and a terminating segment l2, where l1 has an F -
structure and l2 has a G-structure.

The convolution product is commutative. Recall that for two continuous functions f and
g, the convolution of f and g is defined via

(f ∗ g)(x) =
∫ x

0

f(x− t)g(t)dt.

We will utilize the operation of convolution later.
In light of Propositions 1.17 and 1.18, we can solve differential equations to find an

L-species or its corresponding exponential generating function. This is not possible with
B-species. We will utilize this approach in Chapter 3. The following result appears in [1].

Proposition 1.20. If F and G are L-species, then
(a) (F +G)(x) = F (x) +G(x);

(b) (F ·G)(x) = F (x)G(x);

(c) (F ◦G)(x) = F (G(x)), where G(0) = 0;

(d) F ′(x) = d
dx
F (x);

(e)

(∫ X

0

F (T )dT

)
(x) =

∫ x

o

F (t)dt;

(f) (F ∗G)(x) = F (x) ∗G(x).

The following result is sometimes referred to as the Leibniz Rule.

Proposition 1.21. For L-species F and G,

d

dx
[F (x) ∗G(x)] = F (0) ·G(x) + F ′(x) ∗G(x).

12



Chapter 2

Pattern avoidance in Cayley
permutations

In this chapter, we will introduce pattern avoidance in the context of Cayley permutations
and ballots.

2.1 Cayley permutations

As first introduced in [10], a Cayley permutation is a word that consists of positive integers
that include at least one copy of each integer between one and its maximum value. More
formally, a Cayley permutation on a finite set U is a function p : U → [n] such that |U | = n
and Rng(p) = [k] for some k ≤ n. The collection of Cayley permutations from U to [n] is
denoted by Cay[U ]. If U = [n], we write Cayn := Cay[n]. For p ∈ Cayn, we utilize one-line
notation and write p = p1p2...pn, where pi := p(i). In this case, we say p is of length n. We
also define cayn := |Cayn |.

Example 2.1. We look at Cayley permutations of lengths 1, 2, and 3. We have Cay1 = {1},
Cay2 = {11, 12, 21}, and

Cay3 = {111, 112, 121, 122, 123, 132, 211, 212, 213, 221, 231, 312, 321}.

We define Cay to be the B-species with structures

Cay[U ] := {f : U → [n] | Rng(f) = [k], k ∈ [n]},

together with the transport of structure along a bijection σ : U → V defined via

Cay[σ](p) = p ◦ σ−1.

In Proposition 2.5, we will prove that Cayley permutations and ballots are isomorphic as
B-species. For a finite set U with |U | = n, we define αU : Cay[U ] → Bal[U ] via

αU(p) = (p−1({1}), . . . , p−1({k})),

13



where Rng(p) = [k] and k ≤ n. This map is clearly reversible, and hence a bijection. We
immediately get the following.

Proposition 2.2. For n ≥ 0, baln = cayn.

Example 2.3. For the Cayley permutation p = 31211245 in Cay8, we have the corresponding
ballot ({2, 4, 5}, {3, 6}, {1}, {7}, {8}) in Bal8. For the ballot ({2}, {5, 6, 7}, {1, 3}, {4, 8}, {9})
in Bal9 we have the corresponding Cayley permutation 313422245 in Cay9.

It is well known that baln is equal to the nth Fubini number, which appears as entry
A000670 in the Online Encyclopedia of Integer Sequences (OEIS) [11]. The nth Fubini
number is given by

∑n
k=0 k!

{
n
k

}
, where

{
n
k

}
is a Stirling number of the second kind. Hence

we get the following theorem.

Proposition 2.4. For n ≥ 0, cayn =
n∑

k=0

k!

{
n

k

}
.

For a function f with A ⊆ Dom(f), we define f(A) := {f(a) | a ∈ A}. This notation is
used in the proof below.

Proposition 2.5. As B-species, Cay = Bal.

Proof. Let σ : U → V be a bijection for finite sets U and V . We aim to show that Figure 1.4
commutes for species Cay and Bal. Let p ∈ Cay[U ] with Rng(p) = [k]. We see that

αV ◦ Cay[σ](p) = αV (Cay[σ](p))

= αV (p ◦ σ−1)

= ((p ◦ σ−1)−1({1}), . . . , (p ◦ σ−1)−1({k}))
= ((σ ◦ p−1)({1}), . . . , (σ ◦ p−1)({k}))
= (σ(p−1({1})), . . . , σ(p−1({k})))

and

Bal[σ] ◦ αU(p) = Bal[σ](αU(p))

= Bal[σ](p−1({1}), . . . , p−1({k}))
= (σ(p−1({1})), . . . , σ(p−1({k}))).

□

We immediately get the following from Example 1.15 and Proposition 2.5.

Corollary 2.6. Cay(x) =
1

2− ex
.

There are known expressions for the ordinary generating function for the Fubini numbers
given in terms of continued fractions, but we have omitted those results here.

14
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2.2 Pattern avoidance

We now introduce the notions of pattern containment and pattern avoidance. Consider the
Cayley permutations p = p1p2 · · · pn ∈ Cayn and q = q1q2 · · · qk ∈ Cayk. In this case, we say
that p contains q if there exists a subsequence pi1pi2 · · · pik with i1 ≤ i2 ≤ · · · ≤ ik that is
order isomorphic to q (i.e., pia ≤ pib if and only if qa ≤ qb). If p does not contain a pattern
q, then we say p avoids q.

If P is a finite set such that each q ∈ P is a Cayley permutation in Cayk for some k (not
necessarily all the same k), then we say p ∈ Cayn avoids P if p avoids every q ∈ P . In this
case, we say that P is a set of patterns. Note that a set of patterns is always assumed to be
finite. We define Cayn(P ) to be the set of Cayley permutations of length n that avoid the
set of patterns P .

The remainder of this thesis focuses on pattern avoidance in Cayley permutations. In
order to sensibly define pattern avoidance, we needed to restrict the domain of Cayley
permutations to some [n]. One consequence of this is that all species for collections of
Cayley permutations avoiding a set of patterns are L-species since the underlying sets are
ordered. Unless we state otherwise, all species in the remainder of this thesis are assumed
to be L-species.

We define Cay(P ) to be the L-species of Cayley permutations avoiding a set of patterns
P . The corresponding structures are

Cayn(P ) = Cay(P )[n] = {p : [n] → [n] | Rng(f) = [k], k ∈ [n], p avoids P}.

The transport of structure is inherited from Cay. As expected, we define cayn(P ) :=
|Cayn(P )|. We also let Cay(P )(x) and Ĉay(P )(x) denote the corresponding exponential
and ordinary generating functions, respectively.

Example 2.7. Consider Cay5(112). Computer calculations show that there are 360 Cayley
permutations of length 5 that are 112-avoiding. Two of these are 11111 and 13221. However,
12324 is not in Cay5(112) since the pattern 112 occurs in positions 2, 4, 5.

Consider Cay5(111, 112). There are 309 Cayley permutations of length 5 that avoid both
111 and 112. Two of these are 13321 and 32211. However, 21232 is not in Cay5(111, 112)
since it contains the pattern 111 in positions 1, 3, 5, and contains the pattern 112 in positions
1, 3, 4.

Because there exists a bijection between Cayley permutations and ballots, we can describe
what it means for a ballot to avoid a set of patterns. For a set of patterns P , we define
Baln(P ) to be the image of Cayn(P ) in Baln under the natural bijection between Cayley
permutations and ballots described earlier.

Example 2.8. Consider Cay5(112) and Bal5(112). We have the following examples:

• 11111 ∈ Cay5(112) corresponds to the ballot ({1, 2, 3, 4, 5}) ∈ Bal5(112);
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• 13221 ∈ Cay5(112) corresponds to the ballot ({1, 5}, {3, 4}, {2}) ∈ Bal5(112);

• 42143 ∈ Cay5(112) corresponds to the ballot ({3}, {2}, {5}, {1, 4}) ∈ Bal5(112).

For 112-avoiding ballots, given k ∈ [n], each block preceding the block containing k contains
at most one value from {1, . . . , k − 1}, otherwise the corresponding Cayley permutation
would contain the pattern 112. In particular, in a 112-avoiding ballot, all blocks preceding
the block containing the maximum element must be singletons.

We naturally use the notation baln(P ),Bal(P )(x), and B̂al(P )(x) to have the expected
meaning. Given the definition of Baln(P ) and the isomorphism between species Cay and
Bal, the next result is immediate.

Proposition 2.9. For a set of patterns P :

(a) Cay(P ) = Bal(P ) (as L-species);

(b) cayn(P ) = baln(P );

(c) Cay(P )(x) = Bal(P )(x);

(d) Ĉay(P )(x) = B̂al(P )(x).

We now extend the idea of Wilf equivalence in [2] to Cayley permutations. For sets of
patterns P and Q, we say that Cayn(P ) and Cayn(Q) are Wilf equivalent if cayn(P ) =
cayn(Q). If Cayn(P ) and Cayn(Q) are Wilf equivalent, we write Cayn(P ) ∼ Cayn(Q), or
simply P ∼ Q. In the special case that P = {p} and Q = {q}, we write p ∼ q. Certainly,
Wilf equivalence is an equivalence relation. The corresponding equivalence classes are called
Wilf classes. We define [P ]w to be the Wilf class of P .

We define the following maps:

• The reverse map r :
⋃

n∈N∪{0}Cayn →
⋃

n∈N∪{0}Cayn via

r(p1 · · · pn) = pn · · · p1.

• The complement map c :
⋃

n∈N∪{0}Cayn →
⋃

n∈N∪{0}Cayn via

c(p1 · · · pn) = (m+ 1− p1) · · · (m+ 1− pn),

where m := max{pi}.

• The reverse-complement map c ◦ r :
⋃

n∈N∪{0}Cayn →
⋃

n∈N∪{0}Cayn via

c ◦ r(p1 · · · pn) = (m+ 1− pn) · · · (m+ 1− p1),

where m := max{pi}. Note that r ◦ c = c ◦ r.
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Example 2.10. Given the Cayley permutation 132411 ∈ Cay6, we have:

132411 114231 441324 423144
r c r

c

The reverse and complement maps are bijections on Cayn, and therefore c ◦ r is also
a bijection on Cayn. In addition, for any set of patterns P , the maps r : Cayn(P ) →
Cayn(r(P )), c : Cayn(P ) → Cayn(c(P )), and r◦c : Cayn(P ) → Cayn(r◦c(P )) are bijections.
This implies that for a set of patterns P , the sets Cayn(P ),Cayn(c(P )),Cayn(r(P )), and
Cayn(r ◦ c(P )) are all Wilf equivalent.

Proposition 2.11. For a set of patterns P , P ∼ r(P ) ∼ c(P ) ∼ r ◦ c(P ).

Given a set of patterns P , {P, r(P ), c(P ), r ◦ c(P )} is called the symmetry class of P .
We denote the symmetry class of P as [P ]s. Note that for a set of patterns P , [P ]s ⊆ [P ]w
by Proposition 2.11. In fact, every Wilf class of a set of patterns is the union of symmetry
classes. We omit the proof of the next result as it is an easy computation.

Proposition 2.12. For single patterns of lengths 2 and 3, we have the following symmetry
classes:

(a) [11]s = {11};

(b) [12]s = {12, 21};

(c) [111]s = {111};

(d) [123]s = {123, 321};

(e) [132]s = {132, 312, 213, 231};

(f) [112]s = {112, 221, 122, 211};

(g) [121]s = {121, 212}.

It follows from [8], together with Proposition 1.1 in [9], that we get the following Wilf
classes.

Proposition 2.13. For patterns of length 2 and length 3, we have the following distinct
Wilf classes:

(a) [11]w = {11};

(b) [12]w = {12, 21};
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(c) [123]w = [123]w ∪ [132]w = {123, 321, 132, 312, 213, 231};

(d) [112]w = [112]w ∪ [121]w = {112, 221, 122, 211, 121, 212}.

We will avoid relying on the previous result when possible and verify the Wilf equivalence
directly.

We describe all symmetry classes for pairs of patterns of length 2 and several pairs of
patterns of length 2 in the next result. Note that there are

(
12
2

)
= 66 pairs of distinct patterns

of length 3. It turns out that there are 25 distinct symmetry classes for pairs of distinct
patterns of length 3. Again, we omit the proof.

Proposition 2.14. We have the following symmetry classes:

(a) [11, 12]s = {{11, 12}, {11, 21}};

(b) [12, 21]s = {{12, 21}};

(c) [112, 221]s = {{112, 221}, {211, 122}};

(d) [112, 211]s = {{112, 211}, {221, 122}};

(e) [112, 212]s = {{112, 212}, {211, 212}, {221, 121}, {122, 121}};

(f) [221, 212]s = {{221, 212}, {122, 212}, {112, 121}, {211, 121}};

(g) [112, 122]s = {{112, 122}, {211, 221}};

(h) [112, 123]s = {{112, 123}, {211, 321}, {221, 321}, {122, 123}};

(i) [112, 213]s = {{112, 213}, {211, 312}, {221, 231}, {122, 132}};

(j) [121, 132]s = {{121, 132}, {212, 312}};

(k) [121, 231]s = {{121, 231}, {212, 213}, {121, 132}, {212, 312}};

(l) [123, 132]s = {{123, 132}, {321, 231}, {321, 312}, {123, 213}};

(m) [312, 132]s = {{312, 132}, {213, 231}}.

We will prove that the pairs of patterns in (a) and (b) of Proposition 2.14 are Wilf
equivalent in Propositions 3.14–3.17.
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Chapter 3

Enumeration of pattern-avoiding
Cayley permutations

In this chapter, we will investigate Cayley permutations avoiding 1k (k ≥ 2), patterns of
length 2, pairs of patterns of length 2, patterns of length 3, and pairs of patterns of length 3.

3.1 Patterns of type 1k

In this section, we explore Cayley permutations that avoid the pattern

1k := 11 · · · 1︸ ︷︷ ︸
k

for some k ≥ 2. We will rely on the isomorphism between Cay(1k) and Bal(1k).

Proposition 3.1. For k ≥ 2, Cay(1k) = L(E1 + E2 + · · ·+ Ek−1).

Proof. We will verify the result in terms of ballots. Note that a 1k-avoiding ballot has blocks
of sizes at most k − 1. That is, blocks may be any size between 1 and k − 1. It follows that
Bal(1k) = L(E1 + E2 + · · ·+ Ek−1), and so Cay(1k) = L(E1 + E2 + · · ·+ Ek−1). □

Proposition 3.2. Cay(1k)(x) =
1

1−
(∑k−1

i=1
xi

i!

) .
Proof. By Propositions 1.6 and 1.18, we get

Cay(1k)(x) = L(E1 + · · ·+ Ek−1)(x)

= L(E1(x) + · · ·+ Ek−1(x))

=
1

1−
(∑k−1

i=1
xi

i!

) .
□
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Our next goal is to provide an enumeration for Cay(1k). We need an intermediate result.
Given a ballot B = (B1, . . . , Bl) ∈ Baln, define the shadow of B to be (|B1|, . . . , |Bl|), which
is a composition of n (i.e., an ordered list of nonnegative integers where the sum of the
entries is n).

Proposition 3.3. The number of ballots in Baln with shadow (b1, . . . , bl) is given by

n!

1j1(2!)j2(3!)j3 · · · ((k − 1)!)jk−1
,

where ji is the number of occurrences of i among b1, . . . , bl.

Proof. The number of ballots in Baln with shadow (b1, . . . , bl) is(
n

b1

)(
n− b1
b2

)
· · ·
(
n− b1 − · · · − bl−1

bl

)
=

(
n

b1, . . . , bl

)
=

n!

1j1(2!)j2(3!)j3 · · · ((k − 1)!)jk−1
,

where ji is the number of occurrences of i among b1, . . . , bl. □

Proposition 3.4. For k ≥ 2, we have

cayn(1
k) =

∑
n=

∑k−1
i=1 iji

(
n− j2 − 2j3 − · · · − (k − 2)jk−1

j1, j2, . . . jk−1

)
n!

1j1(2!)j2(3!)j3 · · · ((k − 1)!)jk−1
.

Proof. For a fixed collection of multiplicities j1, . . . , jk−1 for blocks of size 1, . . . , k − 1, re-
spectively, we can form a ballot in Baln(1

k) by first choosing an ordering of the block sizes
(i.e., shadow) and then distribute [n] across the blocks. The first step can be done in(

n− j2 − 2j3 − · · · − (k − 2)jk−1

j1, j2, . . . jk−1

)
many ways since n = j1 + 2j2 + · · ·+ (k − 1)jk−1. The second step can be accomplished in

n!

1j1(2!)j2(3!)j3 · · · ((k − 1)!)jk−1

many ways by Proposition 3.3. Summing across all possible cases of block sizes and their
multiplicity, we get

cayn(1
k) =

∑
n=

∑k−1
i=1 iji

(
n− j2 − 2j3 − · · · − (k − 2)jk−1

j1, j2, . . . jk−1

)
n!

1j1(2!)j2(3!)j3 · · · ((k − 1)!)jk−1
.

□
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Below we have an example.

Example 3.5. For Baln(111), we can have blocks of at most size 2. Each ballot in Baln(111)
has j1 many blocks of size 1 and j2 many blocks of size 2, where n = j1 + 2j2. For n = 3,
the possible combinations of j1 and j2 are j1 = 3, j2 = 0 and j1 = 1, j2 = 1. Applying
Proposition 3.4, we see that

∑
3=j1+2j2

3!

1j1(2!)j2

(
3− j2
j2

)
=

3!

13(2!)0

(
3− 0

0

)
︸ ︷︷ ︸

j1=3, j2=0

+
3!

11(2!)1

(
3− 1

1

)
︸ ︷︷ ︸

j1=1, j2=1

= 6 · 1 + 3 · 2
= 12.

Indeed, we see that there are 12 Cayley permutations of length 3 avoiding 111:

Cay3(111) = {112, 121, 122, 123, 132, 211, 212, 213, 221, 231, 312, 321}.

3.2 Patterns of length 2

In this section, we will enumerate all Cayley permutations that avoid patterns of length
two and pairs of patterns of length two. In all cases, we will provide species, exponential
generating functions, ordinary generating functions, and counting formulas. When possible,
we provide species first. As a reminder, because we are studying pattern avoidance, we
assume all species are L-species unless otherwise specified. First, we look at single patterns
of length 2.

Proposition 3.6. Cay(11) = L.

Proof. By Proposition 3.1, Cay(11) = L(E1) = L. □

Note that Cayn(11) is the set of ordinary permutations on [n], which we interpret as linear
orders. In terms of ballots, each element in Baln(11) is an ordered set partition consisting of
singleton blocks, which implies that Cay(11) = L as B-species, as well.

By Propositions 1.18 and 3.6, we immediately get the following. Alternatively, we can
apply Proposition 3.2.

Proposition 3.7. Cay(11)(x) = L(x) =
1

1− x
.

We obtain the following result as Cayn(11) is the set of ordinary permutations on [n].

Proposition 3.8. For n ≥ 0, cayn(11) = n!.
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Note that there is no “nice” representation of the ordinary generating function for the
sequence n!. However, we include a continued fraction representation, which appears as
Theorem 3B in [6].

Proposition 3.9. We have

Ĉay(11)(x) =
1

1− x− 12x2

1−3x− 22x2

1−5x− 32x2

...

,

where odd numbers are the coefficients of x and squares are the coefficients of x2.

We now derive the counting formula for Cay(21) using a bijection to a certain collection
of stars and bars.

Proposition 3.10. For n ≥ 0,

cayn(21) =

{
1, n = 0

2n−1, n ≥ 1.

Proof. Certainly, cay0(21) = 1.
Now, suppose n ≥ 1. Since each Cayley permutation in Cayn(21) must contain an

occurrence of each value from 1 up to its maximum value and is weakly increasing, each
element in Cayn(21) is of the form

1 · · · 1︸ ︷︷ ︸
k1

2 · · · 2︸ ︷︷ ︸
k2

· · ·m · · ·m︸ ︷︷ ︸
km

,

where m is the maximum value and there are ki ≥ 1 occurrences of value i. We can uniquely
encode each Cayley permutation in Cayn(21) into a particular stars and bars model as
follows:

1 · · · 1︸ ︷︷ ︸
k1

2 · · · 2︸ ︷︷ ︸
k2

· · ·m · · ·m︸ ︷︷ ︸
km

→ ⋆ · · · ⋆︸ ︷︷ ︸
k1

| ⋆ · · · ⋆︸ ︷︷ ︸
k2

| · · · | ⋆ · · · ⋆︸ ︷︷ ︸
km

.

The image of this map is the collection of sequences of stars and bars with n stars and
between 0 and n − 1 bars such that every pair of consecutive bars is separated by at least
one star. We can think of each bar as indicating an increase by 1 in the corresponding Cayley
permutation. This mapping is reversible and therefore a bijection. Because there are n− 1
gaps between n stars and in each gap we can place a bar or not, it must be the case that
cayn(21) = 2n−1 for n ≥ 1. □

The exponential generating function for weakly increasing finite sequences with no miss-
ing values is likely known, but we could not find a reference, so we include a proof below.
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Proposition 3.11. Cay(21)(x) =
e2x + 1

2
= cosh(x)ex.

Proof. Consider the geometric sequence given by 2n for n ≥ 0. The exponential generating
function for this sequence is known to be ex. It follows from Propositions 1.18, 1.20(e), and
3.10 that the exponential generating function for Cay(21) is given by

1 +

∫ x

0

e2tdt =
e2x + 1

2

=
ex + e−x

2
ex

= cosh (x)ex.

□

Proposition 3.12. Cay(21) = Eeven · E.

Proof. Recall from Chapter 1 that the species associated with the exponential generating
function cosh(x) is Eeven, the species of even subsets, whereas the species associated with
the exponential generating function ex is E. By Propositions 1.18 and 3.11, it follows that
Cay(21) = Eeven · E. □

Presently, we do not have a combinatorial interpretation of the previous result.

Proposition 3.13. Ĉay(21)(x) =
1− x

1− 2x
.

Proof. Recall that
∑
n≥0

2nxn =
1

1− 2x
(geometric series). This implies that

x

1− 2x
= x · 1

1− 2x

= x ·
∑
n≥0

2nxn

=
∑
n≥0

2nxn+1

=
∑
n≥1

2n−1xn

= 1 · x1 + 2 · x2 + 4 · x3 + 8 · x4 + · · · .

Adding a leading 1 gives us

1 +
∑
n≥1

2n−1xn = 1 +
x

1− 2x
=

1− x

1− 2x
.

□
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Each Cayley permutation in Cayn(21) is weakly increasing while each Cayley permutation
in Cayn(12) is weakly decreasing. Using the reverse map, it is clear that Cay(12) = Cay(21).
Hence the results for Cay(21) also apply to Cay(12) as seen in Table 3.1.

Next, we will look at Cayley permutations that avoid pairs of patterns of length 2. We
will show that for each n and all possible pairs of distinct patterns of length 2, there is only a
single Cayley permutation that avoids both patterns. It follows that all three combinations of
distinct pairs of patterns of length 2 yield the same counting formula, exponential generating
function, ordinary generating function, and representation as species.

Proposition 3.14. For all n ≥ 1, Cayn(11, 12) = {n(n− 1) · · · 321}.

Proof. Cayley permutations that avoid 11 contain no repeats and Cayley permutations that
avoid 12 are weakly decreasing. This leaves the decreasing permutation n(n − 1) · · · 321 of
length n. □

Proposition 3.15. For all n ≥ 1, Cayn(11, 21) = {123 · · · (n− 1)n}.

Proof. Cayley permutations that avoid 11 contain no repeats and Cayley permutations that
avoid 21 are weakly increasing. This leaves the identity permutation of length n. □

Proposition 3.16. For all n ≥ 1, Cayn(12, 21) = {11 · · · 1}.

Proof. Cayley permutations that avoid 12 cannot be increasing and Cayley permutations
that avoid 21 cannot be decreasing. Cayley permutations must contain a 1 so that leaves
the constant Cayley permutation 11 · · · 1 of length n. □

As there is only one Cayley permutation in each of Cayn(11, 12),Cayn(11, 21), and
Cayn(12, 21), they all clearly have the same count and therefore have the same exponen-
tial generating function, ordinary generating function, and species. It is worth mentioning
that Cayn(11, 12) and Cayn(11, 21) are clearly Wilf equivalent using the reverse map but the
previous result tells us that both are also Wilf equivalent to Cayn(12, 21). This immediately
produces the following results.

Proposition 3.17. For all n ≥ 0, cayn(11, 12) = cayn(11, 21) = cayn(12, 21) = 1.

The exponential generating function and ordinary generating function for the constant
sequence of all 1s are well known.

Proposition 3.18. Cay(11, 12)(x) = Cay(11, 21)(x) = Cay(12, 21)(x) = ex.

Propositions 1.18 and 3.18 yield the following.

Proposition 3.19. Cay(11, 12) = Cay(11, 21) = Cay(12, 21) = E.

Proposition 3.20. Ĉay(11, 12)(x) = Ĉay(11, 21)(x) = Ĉay(12, 21)(x) =
1

1− x
.

Note that in terms of ballots, since the only ordered set partition in Baln(12, 21) consists
of a single block, we get Cay(12, 21) = E as B-species.

The results from this section are summarized in Table 3.1. We have included references
for the relevant entries in the Online Encyclopedia of Integer Sequences (OEIS).
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Patterns Species EGF OGF Enumeration OEIS

11 L
1

1− x

1

1− x− 12x2

1−3x− 22x2

1−5x− 32x2

...

n! A000142

12
Eeven · E e2x + 1

2

1− x

1− 2x

{
1, n = 0

2n−1, n ≥ 1
A011782

21

11,12

E ex
1

1− x
1 A00001211,21

12,21

Table 3.1: Results for patterns and pairs of distinct patterns of length 2.

3.3 Patterns of length 3

In this section, we will study Cayley permutations that avoid patterns of length three and
pairs of distinct patterns of length three. In most cases, we will provide species, exponential
generating functions, and counting formulas. When possible, we provide the species first.

We begin with Cayley permutations that avoid a single pattern of length three. We
analyze 111-avoiding Cayley permutations first and provide the corresponding species and
its exponential generating function, as well as a closed form for the counting formula. The
next result is simply a special case of Proposition 3.1.

Proposition 3.21. Cay(111) = L(E1 + E2).

Proposition 3.22. Cay(111)(x) =
2

2− 2x− x2
.

Proof. By Proposition 3.2, we see that

Cay(111)(x) =
1

1− (x+ x2

2
)
=

2

2− 2x− x2
.

□

Our next goal is to obtain a counting formula for Cay(111). We will use the exponential
generating function for Cay(111) together with its partial fraction decomposition to do this.
First, we need two lemmas.

Lemma 3.23. We have
1√

3 + 1 + x
=
∑
n≥0

(−1)nn!

(
√
3 + 1)n+1

· x
n

n!
.
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Proof. We see that

1√
3 + 1 + x

=
−1

−
√
3− 1− x

=

−1
−
√
3−1

−
√
3−1

−
√
3−1

− x
−
√
3−1

=
1√
3 + 1

· 1

1− x
−(

√
3+1)

=
1√
3 + 1

·
∑
n≥0

(
x

−(
√
3 + 1)

)n

=
∑
n≥0

(−1)n

(
√
3 + 1)n+1

· xn

=
∑
n≥0

(−1)nn!

(
√
3 + 1)n+1

· x
n

n!
.

□

The next lemma follows from similar calculations and we omit the proof.

Lemma 3.24. We have
1√

3− 1− x
=
∑
n≥0

n!

(
√
3− 1)n+1

· x
n

n!
.

We utilize the two previous lemmas in the next result.

Proposition 3.25. For all n ≥ 0, cayn(111)(x) = n! · (1 +
√
3)n+1 − (1−

√
3)n+1

2n+1
√
3

.

Proof. Using Proposition 3.22 together with the partial fraction decomposition and Lem-
mas 3.23 and 3.24, we see that

Cay(111)(x) =
2

2− 2x− x2

=
2

(
√
3 + 1 + x)(

√
3− 1− x)

=
1√
3

(
1√

3 + 1 + x
+

1√
3− 1− x

)
=

1√
3

(∑
n≥0

n!

(
√
3− 1)n+1

· x
n

n!
+

n∑
n=0

n!(−1)n

(
√
3 + 1)n+1

· x
n

n!

)
.
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It follows that

cayn(111) =
1√
3

(
n!

(
√
3− 1)n+1

+
n!(−1)n

(
√
3 + 1)n+1

)
= n! · (1 +

√
3)n+1 − (1−

√
3)n+1)

2n+1
√
3

.

□

Recall that Proposition 3.4 provides a recursive enumeration for all Cay(1k), whereas
Proposition 3.25 provides a closed form for the special case Cay(111). Our approach for 111-
avoiding Cayley permutations works because we were able to factor the denominator of the
exponential generating function for Cay(111). It is unlikely that this technique generalizes
because we do not know the appropriate splitting fields.

Now, although Cayn(212) and Cayn(112) are Wilf equivalent by Proposition 2.13, we
will present two different methods for obtaining the same exponential generating function to
show Cay(212) = Cay(112). We will first provide a functional species equation for Cay(212).
For a Cayley permutation p = p1 · · · pn, define max(p) = max{pi | i ∈ [n]}.

Proposition 3.26. Cay(212) = 1 + E ∗ Cay(212) + E ∗ Cay(212)•.

Proof. We provide a combinatorial interpretation. The empty Cayley permutation is cer-
tainly 212-avoiding, which is accounted for by the species 1 on the right hand side. Now
consider a nonempty 212-avoiding Cayley permutation. Observe that the occurrences of the
maximum value of any 212-avoiding Cayley permutation must occur as a single contiguous
string. That is, every 212-avoiding Cayley permutation p is of the form

p1 · · · pim · · ·mpj · · · pn,

where the maximum value is m = max(p) and only occurs in positions i + 1, . . . , j − 1 and
p1 · · · pi, pj · · · pn are both 212-avoiding in their own right. We consider two cases. Suppose
the contiguous string of the maximum value occurs on the far right. Then we have

p1 · · · pi︸ ︷︷ ︸
Cay(212)

m︸︷︷︸
X

m · · ·m︸ ︷︷ ︸
E

,

which yields the species Cay(212)⊙X⊙E = Cay(212)∗E. Now, assume that the contiguous
string of the maximum value does not occur on the far right. In this case, we can identify a
distinguished position in a 212-avoiding permutation, corresponding to the species Cay(212)•.
Then, immediately to the left of the distinguished position, we insert a contiguous string of
the appropriate maximum value. This means

(p1 · · · pip•i+1 · · · pk,︸ ︷︷ ︸
Cay(212)

m,︸︷︷︸
X

m · · ·m)︸ ︷︷ ︸
E

7→ p1 · · · pim · · ·mpj · · · pn︸ ︷︷ ︸
Cay(212)•⊙X⊙E

.
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This generates the species Cay(212)• ⊙ X ⊙ E = Cay(212)• ∗ E. Note that because the
convolution product is commutative, Cay(212)• ∗E = E ∗Cay(212)•. Combining the cases,
we get Cay(212) = 1 + E ∗ Cay(212) + E ∗ Cay(212)•. □

We use the previous functional species equation to determine the following exponential
generating function.

Proposition 3.27. Cay(212)(x) =
x2 − 2x+ 2

2(x− 1)2
.

Proof. Let F = Cay(212). By Proposition 3.26, we have

F (x) = 1 + ex ∗ F (x) + ex ∗ (xF ′(x)).

On the other hand, we see that

1 + ex ∗ x2 − 2x+ 2

2(x− 1)2
+ ex ∗ −x

(x− 1)3

= 1 +

∫ x

0

ex−t t
2 − 2t+ 2

2(t− 1)2
dt+

∫ x

0

ex−t −t

(t− 1)3
dt

=
x2 − 2x+ 2

2(x− 1)2
,

where the last equality was verified using Mathematica [7]. Since both functions satisfy the
same functional equation, the result follows.1 □

Our next goal is to obtain a counting formula for Cay(212). We first provide a recursive
formula.

Proposition 3.28. For n ≥ 1, cayn(212) =
n−1∑
k=0

(k + 1) cayk(212) and cay0(212) = 1.

Proof. As in the case analysis of the proof of Proposition 3.26, to construct a 212-avoiding
Cayley permutation of length n, we take p ∈ Cayk(212) and insert a string of max(p) + 1 of
length n − k into the prefix, suffix, or between one of the k − 1 gaps. This produces k + 1
places to insert the string. We do this for all 0 ≤ k ≤ n− 1. It follows that

cayn(212) =
n−1∑
k=0

(k + 1) cayk(212).

□

We prove the following lemma to be used in the proof of Proposition 3.30.

1The proof that appears in print contained an error.
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Lemma 3.29. For n ≥ 2,
n−1∑
k=1

(k + 1)(k + 1)! = (n+ 1)!− 2.

Proof. We will proceed by induction. If n = 2, then the left-hand side is
∑1

k=1(k+1)(k+1)! =
(2)(2)! = 4 while the right-hand side is (2 + 1)! − 2 = 3! − 2 = 6 − 2 = 4. Therefore, the
equality holds when n = 2. Now, suppose the equation holds for a fixed n ≥ 2. Then

n∑
k=1

(k + 1)(k + 1)! =
n−1∑
k=1

(k + 1)(k + 1)! + (n+ 1)(n+ 1)!

= (n+ 1)!− 2 + (n+ 1)(n+ 1)! (by inductive hypothesis)

= (n+ 1)!(1 + (n+ 1))− 2

= (n+ 1)!(n+ 2)− 2

= (n+ 2)!− 2,

as desired. □

Proposition 3.30. For all n ≥ 0,

cayn(212) =

{
1, n = 0
(n+1)!

2
, n ≥ 1.

Proof. We will proceed by induction. It is easily seen that Cay0(212) = 1 = Cay1(212), which

verifies the base cases. Now, let n ≥ 2 and assume Cayk(212) =
(k+1)!

2
for all 1 ≤ k ≤ n− 1.

Then

cayn(212) =
n−1∑
k=0

(k + 1) cayk(212) (by Proposition 3.28)

= 1 +
n−1∑
k=1

(k + 1) cayk(212)

= 1 +
n−1∑
k=1

(k + 1)(k + 1)!

2
(by inductive hypothesis)

= 1 +
1

2

n−1∑
k=1

(k + 1)(k + 1)!

= 1 +
1

2
((n+ 1)!− 2) (by Lemma 3.29)

= 1 +
(n+ 1)!

2
− 1

=
(n+ 1)!

2
.

□
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Recall that Cayn(212) and Cayn(121) are Wilf equivalent by Proposition 2.11. So, the
results provided for Cay(212) also apply to Cay(121).

We now transition to 112-avoiding Cayley permutations. The next result provides a func-
tional species equation for Cay(112). Recall that Cay(112) = Bal(112) by Proposition 2.9.

Proposition 3.31. Cay(112)′ = L · Cay+(112) + L · Cay(112).

Proof. We will verify the result in terms of ballots. In a 112-avoiding ballot, all the blocks
preceding the block containing the maximum value must be singletons. First, identify the
maximum value with ⋆. If ⋆ is not in a block by itself, then a 112-avoiding ballot is of the
form

({a1}, {a2}, . . . {ak}︸ ︷︷ ︸
L

, {⋆, b1, . . . , bl}, {· · · }, . . . , {· · · }︸ ︷︷ ︸
Bal+(112) ignoring ⋆

),

where l ≥ 1 and the blocks to the right of the block containing ⋆ may or may not exist.
Now, if ⋆ is in a block by itself, then a 112-avoiding Cayley permutation is of the form

({a1}, {a2}, . . . {ak}︸ ︷︷ ︸
L

, {⋆}, {· · · }, . . . , {· · · }︸ ︷︷ ︸
Bal(112) ignoring ⋆

),

where again, blocks to the right of the block containing {⋆} may or may not exist. It follows
that

Bal(112)′ = L · Bal+(112) + L · Bal(112),
which implies

Cay(112)′ = L · Cay+(112) + L · Cay(112).
□

Proposition 3.32. Cay(112)(x) =
x2 − 2x+ 1

2(x− 1)2
.

Proof. Using the functional species equation in Proposition 3.31 together with Proposi-
tion 1.6(h), we obtain

Cay(112)′(x) =
1

1− x
· (Cay(112)(x)− 1) +

1

1− x
· (Cay(112)(x)).

To ease notation, we set F = Cay(112). Simplifying, we get

F ′(x) =
F (x)− 1

1− x
+

F (x)

1− x

=
2F (x)− 1

1− x
.

Solving this differential equation yields F (x) =
x2 − 2x+ 2

2(x− 1)2
. □
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By Proposition 2.12, Cayn(112),Cayn(221),Cayn(211), and Cayn(122) are all Wilf equiv-
alent. This implies that the results for Cay(112) also apply to Cay(221),Cay(211), and
Cay(122). However, the exponential generating functions for Cay(212) and Cay(112) are
the same according to Propositions 3.27 and 3.32. This implies that all six of Cayn(112),
Cayn(221), Cayn(211), Cayn(122), Cayn(121), and Cayn(212) are Wilf equivalent indepen-
dent of Proposition 2.13. Moreover, all six species are isomorphic by Proposition 1.18.

Next, we consider Cayley permutations avoiding the ordinary permutations of length 3.
After translating between contexts, the next result follows by combining results from [3]
and [9].

Proposition 3.33. Ĉay(123)(x) =
1

2
+

1

1 +
√
1− 8x+ 8x2

.

By Proposition 2.13, all ordinary permutations p ∈ {123, 321, 312, 213, 132, 231} are Wilf
equivalent, so the ordinary generating function for Cay(123) is also the ordinary generating
function for all other ordinary permutations of length 3.

We will now look at pairs of patterns of length 3. First, we will provide a functional
species equation for Cay(111, 112) by altering the thinking we used to obtain the species
Cay(112).

Proposition 3.34. Cay(111, 112)′ = L ·X · Cay(111, 112) + L · Cay(111, 112).

Proof. In terms of ballots, in a 112-avoiding and 111-avoiding ballot, all the blocks preceding
the block containing the maximum value must be singletons and all blocks are at most size
2. Identify the maximum value with ⋆. If ⋆ is not in a block by itself, then a 111-avoiding
and 112-avoiding ballot is of the form

({a1}, {a2}, . . . {ak}︸ ︷︷ ︸
L

, {⋆, b1}︸ ︷︷ ︸
X ignoring ⋆

, {· · · }, . . . , {· · · }︸ ︷︷ ︸
Bal(111,112)

),

where the blocks to the right of the block containing ⋆ may or may not exist. Now, if ⋆ is in
a block by itself, then a 111-avoiding and 112-avoiding Cayley permutation is of the form

({a1}, {a2}, . . . {ak}︸ ︷︷ ︸
L

, {⋆}, {· · · }, . . . , {· · · }︸ ︷︷ ︸
Bal(111,112) ignoring ⋆

),

where again, blocks to the right of a block containing {⋆} may or may not exist. It follows
that

Bal(111, 112)′ = L ·X · Bal(111, 112) + L · Bal(111, 112),

which implies

Cay(111, 112)′ = L ·X · Cay(111, 112) + L · Cay(111, 112).

□
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Using integration, we acquire the corresponding exponential generating function.

Proposition 3.35. Cay(111, 112)(x) =
e−x

(1− x)2
.

Proof. Using the functional species equation in Proposition 3.34 together with Proposi-
tion 1.6, we obtain

Cay(111, 112)′(x) =
x

1− x
Cay(111, 112)(x) +

1

1− x
Cay(111, 112)(x).

To ease notation, we set F = Cay(111, 112). Simplifying, we get

F ′(x) =
xF (x)

1− x
+

F (x)

1− x

= F (x)

(
x+ 1

1− x

)
.

Solving the differential equation, we get

F (x) = e−2 ln |1−x|e−x

= eln(1−x)−2

e−x

=
e−x

(1− x)2
,

and so Cay(111, 112)(x) =
e−x

(1− x)2
. □

Proposition 3.36. Cay(111, 112) = L ·Der.

Proof. Recall that L(x) = 1
1−x

and Der(x) = e−x

1−x
by Proposition 1.6. By Propositions 1.18

and 3.35, it follows that Cay(111, 112) = L ·Der. □

We currently do not have a combinatorial interpretation of the previous result.
By Proposition 2.11, Cayn(111, 112), Cayn(111, 221), Cayn(111, 122), and Cayn(111, 211)

are all Wilf equivalent. So, the results for Cay(111, 112) also apply to Cay(111, 221),
Cay(111, 122), and Cay(111, 211). The pair Cay(111, 121) and Cay(111, 212) are Wilf equiv-
alent by Proposition 2.11 using the complement map, and data produced using Python
suggests this pair is Wilf equivalent to the previously mentioned four sets. This yields the
following conjecture.

Conjecture 3.37. We claim that

[111, 112]w = {{111, 112}, {111, 211}, {111, 221}, {111, 122}, {111, 121}, {111, 212}},

which would imply that the functional species equation, the derivative of the functional
species equation, and the exponential generating function for Cay(111, 112) also apply to
Cay(111, 121) and Cay(111, 212).
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Next, we look at Cay(221, 212).

Proposition 3.38. Cay(221, 212) = 1 + Cay(221, 212) ∗ E + Cay(221, 212)•.

Proof. We provide a combinatorial interpretation. The empty Cayley permutation is cer-
tainly both 221-avoiding and 212-avoiding, which is accounted for by the species 1 on the
right hand side. Now consider a nonempty 221-avoiding and 212-avoiding Cayley permuta-
tion. As in Proposition 3.26, a Cayley permutation avoiding 212 has its maximum value as
a contiguous string. We consider two cases. Assume that the contiguous string consisting of
maximum value m occurs on the far right. Then we have

p1 · · · pi︸ ︷︷ ︸
Cay(221,212)

m︸︷︷︸
X

m · · ·m︸ ︷︷ ︸
E

,

where the maximum value is m. Now, assume that the contiguous string of the maximum
value does not occur on the far right. But to be 221-avoiding, there can only be one occur-
rence of the maximum value. We can then identify a distinguished position in a 221-avoiding
and 212-avoiding permutation, and insert a singular new maximum value to the left of the
distinguished position. That is, we have the form

p1 · · · pimpi+2 · · · pn︸ ︷︷ ︸
Cay(221,212)•

,

producing the species Cay(221, 212)•. Combining the cases, we get Cay(221, 212) = 1 +
Cay(221, 212) ∗ E + Cay(221, 212)•. □

We need the following proposition before we use the functional species equation to derive
the corresponding exponential generating function.

Proposition 3.39. Cay(221, 212)′(x) = ex + Cay(221, 212)′(x) ∗ ex + Cay(221, 212)•(x).

Proof. Let F = Cay(221, 212). From Propositions 1.18 and 3.38, we have

F (x) = 1 + ex ∗ F (x) + F •(x) = 1 + F (x) ∗ ex + 1 ∗ F •(x)

since the convolution operation is commutative and F •(x) = 1 ∗ F •(x). Using the Product
Rule and Proposition 1.21 (Leibniz Rule), we have

F ′(x) = 0 + F (0) · ex + F ′(x) ∗ ex + 1 · F •(x) + 0 ∗ F •(x)

= ex + F ′(x) ∗ ex + F •(x)

since F (0) = 1 and 0 ∗ F •(x) = 0. □

The previous proposition gives us the functional species equation by Proposition 1.18.
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Proposition 3.40. Cay(221, 212)′ = E + Cay(221, 212)′ ∗ E + Cay(221, 212)•.

We now use the functional species equation to determine the following exponential gen-
erating function.

Proposition 3.41. Cay(221, 212)(x) = 1 +

∫ x

0

et

(1− t)2
dt.

Proof. Define G(x) := 1 +

∫ x

0

et

(1− t)2
dt such that G(0) = 1. Recall that G•(x) = x ·G′(x)

and notice that G′(x) =
ex

(1− x)2
= E(x) · L2(x).

We will show that G(x) satisfies the functional species equation in Proposition 3.40. We
see that

ex +G′(x) ∗ ex +G•(x) = ex + ex ∗ ex

(1− x)2
+

xex

(1− x)2

= ex +

∫ x

0

et

(1− t)2
· e(x−t)dt+

xex

(1− x)2

= ex + ex
∫ x

0

1

(1− t)2
dt+

xex

(1− x)2

= ex(1 + x · L(x) + x · L2(x))

= ex(1 + L(x)− 1 + x · L2(x)) (by Example 1.14)

= exL(x)(1 + x · L(x))
= exL(x)L(x)

= E(x)L2(x)

= G′(x).

Therefore, we have Cay(221, 212)(x) = 1 +

∫ x

0

et

(1− t)2
dt. □

It appears that
∫ x

0
et

(1−t)2
is not equal to an elementary function, which is why we have

left the exponential generating function for Cay(221, 212) in terms of this integral.
By Proposition 2.11, Cayn(221, 212), Cayn(112, 121), Cayn(211, 121), and Cayn(112, 212)

are all Wilf equivalent. Thus, the results for Cay(221, 212) also apply to Cay(112, 121),
Cay(211, 121), and Cay(122, 212). Data, again produced using Python, suggests that the
previous four sets are also Wilf equivalent to Cayn(121, 212), which is in its own symmetry
class. This yields the following conjecture.

Conjecture 3.42. We claim that

[221, 212]w = [221, 212]s ∪ [121, 212]s

= {{221, 212}, {112, 121}, {211, 121}, {112, 212}, {121, 212}},
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which would imply that the functional species equation, the derivative of the functional
species equation, and the exponential generating function for Cay(221, 212) also apply to
Cay(121, 212).

We were unable to determine a species equation, exponential generating function, ordi-
nary generating function, or counting formula for the remaining pairs of patterns of length
three. However, based on numerical data produced using Python, we have two more conjec-
tures.

Recall parts (h)–(m) from Proposition 2.14. The data suggests that the corresponding
six symmetry classes can be merged into two. The counting sequences for Cay(112, 123),
Cay(112, 213), Cay(121, 132), and Cay(121, 231) appear to match OEIS entry A001003 up to
at least the first eight terms. The first seven terms of the counting sequences for Cay(123, 132)
and Cay(312, 132) appear to match OEIS entry A007583 after inserting a leading 1 into the
OEIS sequence. This produces the following conjecture.

Conjecture 3.43. We claim that

• [112, 123]w = [112, 123]s ∪ [112, 213]s ∪ [121, 132]s ∪ [121, 231]s

= {{112, 123}, {211, 321}, {221, 321}, {122, 123}, {112, 213}, {211, 312},
{221, 231}, {122, 132}, {121, 132}, {212, 312}, {121, 231}, {212, 213}}.

• [123, 132]w = [123, 132]s ∪ [312, 132]s

= {{123, 132}, {321, 231}, {321, 312}, {123, 213}, {312, 132}, {213, 231}}.

The findings from this section are summarized in Table 3.2 with the exception of the
ordinary generating function in Proposition 3.33. Note that we utilize F for ease of notation
when the species is written in terms of a functional species equation.

35



Patterns Species EGF Enumeration OEIS

111 L(E1 + E2)
2

2− 2x− x2
n! · (1 +

√
3)n+1 − (1−

√
3)n+1

2n+1
√
3

A080599

212
F = 1 + E ∗ F + E ∗ F •

x2 − 2x+ 2

2(x− 1)2

{
1, n = 0
(n+1)!

2 , n ≥ 1
A001710

121

112

F ′ = L · F+ + L · F
211

221

122

221,212
F = 1 + E ∗ F + 1 ∗ F •

1 +

∫ x

0

et

(1− t)2
dt A001339

211,121

112,121
F ′ = E + F ′ ∗ E + F •

122,212

111,112

F ′ = L · F + L · x · F e−x

(1− x)2
A000255

111,211

111,122

111,221

Table 3.2: Results for patterns and pairs of distinct patterns of length 3.
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Chapter 4

Primitive Cayley permutations

This chapter focuses on primitive Cayley permutations. A primitive Cayley permutation
of length n is a Cayley permutation p = p1 · · · pn such that pi ̸= pi+1 for 1 ≤ i ≤ n − 1.
That is, a primitive Cayley permutation has no “flat steps”. We will analyze primitive
Cayley permutations that avoid patterns and distinct pairs of patterns up to length 3. For
a set of patterns P , let Prim(P ) be the species of primitive Cayley permutations and let
Primn(P ), primn(P ),Prim(P )(x) and P̂rim(P )(x) have the naturally intended meaning.

We first provide species, exponential generating functions, counting formulas, and or-
dinary generating functions for primitive Cayley permutations avoiding patterns of length
2.

Proposition 4.1. For n ≥ 1, Primn(11) is the set of all ordinary permutations of length n.
In particular, Primn(11) = Cayn(11).

Proof. Primitive Cayley permutations that are 11-avoiding do not contain any repeats. This
leaves the ordinary permutations, which is the same as Cayn(11). □

The next four results follow immediately from the fact that Primn(11) = Cayn(11). See
Propositions 3.6–3.9.

Proposition 4.2. Prim(11) = L.

Proposition 4.3. Prim(11)(x) =
1

1− x
.

Proposition 4.4. For n ≥ 0, primn(11) = n!.

Proposition 4.5. We have

P̂rim(11)(x) =
1

1− x− 12x2

1−3x− 22x2

1−5x− 32x2

...

,

where odd numbers are the coefficients of x and squares are the coefficients of x2.
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We now transition to other patterns of length 2. While looking at patterns of length 2,
we also obtained results on pairs of distinct patterns of length 2 simultaneously.

Proposition 4.6. For all n ≥ 1, Primn(12) = Primn(11, 12) = Cayn(11, 12) = {n(n −
1) · · · 321}.

Proof. Primitive Cayley permutations that avoid 12 are weakly decreasing. Additionally,
primitive Cayley permutations do not contain any consecutive strings of the same value.
This leaves the decreasing permutation n(n − 1) · · · 321 of length n. It is easily seen that
Primn(11, 12) = {n(n− 1) · · · 321} = Cayn(11, 12) (see Proposition 3.14). □

We immediately get the following from Propositions 3.17–3.19.

Proposition 4.7. For all n ≥ 0, primn(12) = primn(11, 12) = 1.

Proposition 4.8. Prim(12)(x) = Prim(11, 12)(x) = ex.

Proposition 4.9. Prim(12) = Prim(11, 12) = E.

Proposition 4.10. P̂rim(12)(x) = P̂rim(11, 12)(x) =
1

1− x
.

By Proposition 2.11 restricted to Primn, Primn(12) and Primn(21) are Wilf equivalent
(using the reverse map). Also, Primn(11, 12) and Primn(11, 21) are Wilf equivalent (using the
reverse map). Hence, the previous four results also apply to Primn(21) and Primn(11, 21).

We only have one pair of patterns of length 2 left to consider.

Proposition 4.11. For n ≥ 0,

Primn(12, 21) =


{empty word}, n = 0

{1}, n = 1

∅, otherwise.

Proof. The claim is clear when n = 0 and n = 1. Otherwise, primitive Cayley permutations
avoiding 12 and 21 cannot have an increase nor a decrease in value but also cannot have
any consecutive repeats. Therefore, for n ≥ 2, there does not exist a primitive Cayley
permutation that avoids both 12 and 21, and hence Primn(12, 21) = ∅ for n ≥ 2. □

The next result is immediate.

Proposition 4.12. For n ≥ 0,

primn(12, 21) =

{
1, n ∈ {0, 1}
0, otherwise.

38



Using the previous proposition, we obtain the species and corresponding exponential
generating function for Prim(12, 21).

Proposition 4.13. Prim(12, 21)(x) = 1 + x.

By Proposition 1.18, we get the next result.

Proposition 4.14. Prim(12, 21) = 1 + E1.

It is not hard to see that the ordinary generating function is the same as the exponential
generating function in this case.

Proposition 4.15. P̂rim(12, 21)(x) = 1 + x.

For pairs of patterns of length 3, we were only able to obtain results for Prim(123, 321).
First, we cite a necessary result known as the Erdős–Szekeres Theorem [5].

Proposition 4.16 (Erdős–Szekeres Theorem). For r, s ∈ N, any (ordinary) permutation of
length at least rs+ 1 contains either the pattern 123 · · · (r + 1) or (s+ 1) · · · 321.

Example 4.17. We look at the set Prim4(123, 321) to build some intuition. We see that

Prim4(123, 321) = {1212, 1312, 2121, 2131, 2132, 2143, 2312, 2313, 2413, 3132, 3142, 3412}.

We have underlined primitive Cayley permutations based on their initial value. Notice that
two of the permutations start with 1, seven start with 2, and three start with 3. We will
argue that this phenomenon holds for all n ≥ 4.

Proposition 4.18. For n ≥ 0,

primn(123, 321) =


1, n ≤ 1

2, n = 2

6, n = 3

12, n ≥ 4.

Proof. By brute force, we get the results for n ∈ {0, 1, 2, 3}. We have verified the result for
n = 4 in Example 4.17. Now suppose that n ≥ 5. By the Erdős–Szekeres Theorem, every
ordinary permutation of length at least 5 contains the pattern 123 or 321. It follows that
every primitive Cayley permutation in Primn(123, 321) has maximum value of at most 4. We
have three cases to consider based on the initial value of the corresponding primitive Cayley
permutations in Primn(123, 321).

If p ∈ Primn(123, 321) starts with a 1, then the first two values are either 12 or 13. If p
starts with a 12, we have

12 · · · 1︸ ︷︷ ︸
n odd

or 12 · · · 12︸ ︷︷ ︸
n even

.
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If p starts with a 13, we have

13 · · · 132︸ ︷︷ ︸
n odd

or 13 · · · 1312︸ ︷︷ ︸
n even

.

Notice that if p started with 14, we would need a 2 and 3 later in our permutation, resulting
in a 123 or 321 pattern. Therefore, regardless of whether n is odd or even, we have two
primitive Cayley permutations that begin with 1.

If p ∈ Primn(123, 321) starts with a 3, then the first two values are either 31 or 34. If p
starts with a 31, then we can have the first three positions be 313 or 314. We then have

313 · · · 12︸ ︷︷ ︸
n odd

or 313 · · · 132︸ ︷︷ ︸
n even

or
314 · · · 12︸ ︷︷ ︸

n odd

or 314 · · · 142︸ ︷︷ ︸
n even

.

We could also have p start with 34, in which case we have

3414 · · · 142︸ ︷︷ ︸
n odd

or 341 · · · 412︸ ︷︷ ︸
n even

.

If p started with 32, we would need a 1 later in the permutation, resulting in a 321 pattern.
Hence, regardless of whether n is odd or even, we have three primitive Cayley permutations
that begin with 3.

If p ∈ Primn(123, 321) starts with a 2, then the first three values could be 212, 213, 214,
231, or 241. If p starts with 212, then we have

212 · · · 12︸ ︷︷ ︸
n odd

or 212 · · · 1︸ ︷︷ ︸
n even

.

If p starts with a 213, then we could have

213 · · · 13︸ ︷︷ ︸
n odd

or 213 · · · 131︸ ︷︷ ︸
n even

or
213 · · · 1312︸ ︷︷ ︸

n odd

or 213 · · · 132︸ ︷︷ ︸
n even

.

We could also have p start with 214 in which case we have

214 · · · 413︸ ︷︷ ︸
n odd

or 214 · · · 143︸ ︷︷ ︸
n even

.

If p starts with 231, then we could have

231 · · · 132︸ ︷︷ ︸
n odd

or 231 · · · 312︸ ︷︷ ︸
n even
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or
231 · · · 31︸ ︷︷ ︸

n odd

or 231 · · · 313︸ ︷︷ ︸
n even

.

Lastly, p could start with 241 and we could have

241 · · · 143︸ ︷︷ ︸
n odd

or 241 · · · 413︸ ︷︷ ︸
n even

.

In the final case, seven primitive Cayley permutations begin with 2.
Combining all possible cases, we see that for n ≥ 4, primn(123, 321) = 12. □

Proposition 4.19. Prim(123, 321)(x) = 12ex − (11 + 11x+ 5x2 + x3).

Proof. The function 12ex is the exponential generating function for the constant sequence
of 12s. To produce the desired exponential generating function we need to subtract the
appropriate terms, and hence we obtain the desired result. □

The results of Proposition 2.11 certainly apply to primitive Cayley permutations avoiding
a set of patterns. Interestingly, numerical investigations have suggested that several collec-
tions of primitive Cayley permutations avoiding distinct pairs of patterns of length 3 are
enumerated by a sequence appearing in OEIS. In the list below, we have indicated which
sets are symmetric and have a corresponding hit in OEIS. After potentially inserting or
deleting one or two leading terms of the corresponding OEIS entry, each counting sequence
matches at least the first seven terms. In most cases, we either have to insert or delete one
or two leading terms from the OEIS sequence.

• Prim(121) ∼ Prim(212) (A000153);

• Prim(112, 221) ∼ Prim(211, 122) (A052582);

• Prim(121, 123) ∼ Prim(121, 321) ∼ Prim(212, 321) ∼ Prim(212, 123) (A119370);

• Prim(123, 132) ∼ Prim(321, 231) ∼ Prim(321, 312) ∼ Prim(123, 213) (A025192);

• Prim(231, 132) ∼ Prim(132, 231) ∼ Prim(213, 312) ∼ Prim(312, 213) (A265278);

• Prim(123, 231) ∼ Prim(321, 132) ∼ Prim(321, 213) ∼ Prim(123, 312) (A038503).

The findings from this chapter are summarized in Table 4.1.
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Patterns Species EGF OGF Enumeration OEIS

11 L
1

1− x

1

1− x− 12x2

1−3x− 22x2

1−5x− 32x2

...

n! A000142

12

E ex
1

1− x
1 A000012

21

11,12

11,21

12,21 1 + E1 1 + x 1 + x

{
1, n ∈ {0, 1}
0, otherwise

A019590

123,321 12ex − (11 + 11x+ 5x2 + x3)


1, n ∈ {0, 1}
2, n = 2

6, n = 3

12, n ≥ 4

Table 4.1: Results for patterns and pairs of distinct patterns of primitive Cayley permuta-
tions.
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Chapter 5

Conclusion

In this thesis, we analyzed Cayley permutations avoiding patterns and pairs of patterns of
lengths 2 and 3 using a species-first approach when possible.

In Chapter 1, we established the basics of species through motivating examples and
definitions. Of particular importance, we established the difference between B-species and
L-species. The key difference between the two is that the underlying sets are ordered for
L-species.

In Chapter 2, we introduced Cayley permutations and pattern avoidance along with an
isomorphism between the species of Cayley permutations and ballots. We also summarized
symmetry and Wilf classes in the context of Cayley permutations avoiding a set of patterns.

In the next chapter, we explored Cayley permutations avoiding certain sets of patterns.
In the first section, we obtained the species, exponential generating function for Cay(1k),
and a counting formula for any k ≥ 2. In the second section, we obtained the species,
exponential generating function, counting formula, and ordinary generating function for all
patterns and pairs of patterns of length 2. Our results are summarized in Table 3.1. In the
last section, we investigated Cayley permutations avoiding patterns of length 3 and pairs of
patterns of length 3. We were able to characterize all sets of Cayley permutations avoiding
patterns of length 3 that do not correspond to ordinary permutations. In each of these
cases, we obtained the species, exponential generating function, and counting formula. We
also obtained a few species and exponential generating functions for Cayley permutations
avoiding pairs of patterns of length 3. Our results are summarized in Table 3.2.

In Chapter 4, we touched on primitive Cayley permutations avoiding patterns of length
2, pairs of patterns of length 2, and a pair of patterns of length 3. The results for this chapter
are summarized in Table 4.1.

We have the following conjectures concerning Wilf classes of pairs of patterns of length
3 inspired by numerical investigations.

• [111, 112]w = {{111, 112}, {111, 211}, {111, 221}, {111, 122}, {111, 121}, {111, 212}};

• [221, 212]w = {{221, 212}, {112, 121}, {211, 121}, {112, 212}, {121, 212}};
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• [112, 123]w = {{112, 123}, {211, 321}, {221, 321}, {122, 123}, {112, 213}, {211, 312},
{221, 231}, {122, 132}, {121, 132}, {212, 312}, {121, 231}, {212, 213}};

• [123, 132]w = {{123, 132}, {321, 231}, {321, 312}, {123, 213}, {312, 132}, {213, 231}}.

We conclude with a list of open problems. We wish to characterize and enumerate:

• Cayley permutations that avoid pairs of patterns of length 3 that we did not address;

• Cayley permutations that avoid patterns and pairs of patterns of lengths greater than 3;

• Cayley permutations that avoid sets of patterns of different lengths;

• Primitive Cayley permutations that avoid sets of patterns of length 3 that we did not
address, as well as sets of patterns greater than 3.
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