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Chapter 1

Sets and Counting Principles

A set is a collection of objects called elements. Typically, braces are used to denote sets
as in {b, c, d, f}, which is the same set as {b, d, c, f}, and the same as {c, f, c, f, d, b}. If A is

a set and x is an element of A, we write x ∈ A . Otherwise, we write x /∈ A . For example,
b ∈ {b, d, c, f} while e /∈ {b, d, c, f}. The set containing no elements is called the empty set,

and is denoted by the symbol ∅ , but can also be written as {} . Any set that contains at

least one element is referred to as a nonempty set. If we think of a set as a box potentially
containing some stuff, then the empty set is a box with nothing in it.

The empty set and the set {b, c, d, f} are examples of finite sets. Any set that is not

finite is an infinite set. For example, the natural numbers defined by N := {1, 2, 3, . . .}
and integers defined by Z := {0,±1,±2,±3, . . .} are both examples of infinite sets. Some

books will include zero in the set of natural numbers, but we do not. Since the set of natural
numbers consists of the positive integers, the natural numbers are sometimes denoted by

Z+ . The real numbers, denoted by R , is another example of an infinite set. If you look
closely at our definitions for the natural numbers and integers you will notice that we wrote
:= instead of =. We use := to mean that the symbol or expression on the left is defined to

be equal to the expression on the right.
The language associated to sets is specific. We will often define sets using the following

notation, called set-builder notation:

S = {x ∈ A | P (x)} ,

where P (x) is some predicate statement involving x. The first part “x ∈ A” denotes what
type of x is being considered. The predicate to the right of the vertical bar determines the
condition(s) that each x must satisfy in order to be a member of the set. This notation is
read as “The set of all x in A such that P (x).”

Example 1.1. The set {x ∈ N | x is even and x ≥ 8} describes the collection of even
natural numbers that are greater than or equal to 8.

Example 1.2. We can define the rational numbers using set-builder notation via

Q := {a/b | a, b ∈ Z and b 6= 0} .
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

Problem 1.3. Write the set of perfect squares {1, 4, 9, 16, . . .} using set-builder notation.

Problem 1.4. Translate the following set defined with set-builder notation in English and
list a few of its elements:

P = {x ∈ N | x = 2n for some n ∈ N}.

The cardinality of a setA, denoted by |A| , is the number of elements inA. For example,

if A = {b, c, d, f}, then |A| = 4. We will mostly concern ourselves with the cardinality of
finite sets in this book. Cardinality gets wildly more complicated if we consider infinite sets.

If A and B are sets, then we say that A is a subset of B, written A ⊆ B , provided that
every element of A is an element of B.

Example 1.5. We have {c, f, g} ⊆ {b, c, d, f, g}.

Problem 1.6. Let A be a set. Determine whether each of the following statements is true
or false. If a statement is true, explain why. If a statement is false, provide a specific
counterexample.

(a) A ⊆ A.

(b) ∅ ⊆ A.

Problem 1.7. Consider the set A = {a, b, c}. How many subsets does A have?

Theorem 1.8 (Transitivity of Subsets). Suppose that A, B, and C are sets. If A ⊆ B and
B ⊆ C, then A ⊆ C.

Note that two sets A and B are equal, denoted A = B , if the sets contain the same
elements. It’s clear that A = B if and only if A ⊆ B and B ⊆ A. If A ⊆ B, then A is called a
proper subset provided that A 6= B. In this case, we may write A ⊂ B or A ( B . Some
authors use ⊂ to mean ⊆, so some confusion could arise if you are not reading carefully.

Sometimes it is useful to fix a set to focus our attention on. The term universe of
discourse (or domain of discourse) generally refers to the collection of objects being
discussed in a specific context.

Let A and B be sets in some universe of discourse U . We define the following.

(a) The union of A and B is A ∪B := {x ∈ U | x ∈ A or x ∈ B} .

(b) The intersection of A and B is A ∩B := {x ∈ U | x ∈ A and x ∈ B} .

(c) If A and B have the property that A∩B = ∅, then we say that A and B are disjoint.

(d) The set difference (relative to U) of the setsA andB is A \B := {x ∈ U | x ∈ A and x /∈ B} .

(e) The complement (relative to U) of A is the set Ac := U \ A = {x ∈ U | x /∈ A} .

Problem 1.9. Suppose that the universe of discourse is U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Let
A = {1, 2, 3, 4, 5}, B = {1, 3, 5}, and C = {2, 4, 6, 8}. Find each of the following and then
determine the cardinality of the set.
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

(a) A ∩ C

(b) B ∩ C

(c) A ∪B

(d) A \B

(e) B \ A

(f) C \B

(g) Bc

(h) Ac

(i) (A ∪B)c

(j) Ac ∩Bc

Is any pair of the original sets A, B, and C disjoint?

The next theorem should be clear.

Theorem 1.10. If A is a subset of some universe of discourse U , then

(a) A ∪ Ac = U ;

(b) A ∩ Ac = ∅ (i.e., A and Ac are disjoint).

The following principle is a natural notion.

Theorem 1.11 (Sum Principle for Disjoint Sets). If A and B are disjoint sets, then

|A ∪B| = |A|+ |B|.

More generally, if A1, . . . , An are pairwise disjoint sets, then

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An|.

Problem 1.12. A domino is a rectangular tile, usually with a line dividing its face into
two square ends, and each end is marked with a number of dots (also called pips) or is blank.
Figure 1.1 shows a few examples of dominoes. The first and second domino in the figure are
actually the same domino since orientation of the domino is irrelevant! When tackling the
problems below, consider handling disjoint cases. If you visualize the various cases, you may
end up with a nice staircase-looking arrangement.

(a) How many dominoes are there in a set that includes double blank through double nine?

(b) How many dominoes are there in a set that includes double blank through double
twelve?
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

Figure 1.1: Examples of dominoes.

(c) How many dominoes are there in a set that includes double blank through double n?

Problem 1.13. How many students are enrolled in MAT 136 or MAT 226 (or both) if there
are 409 in MAT 136 and 156 in MAT 226? Do you need to know that 40 students are in
both courses?

The previous problems gives us an indication of how to generalize the Sum Principle
(Theorem 1.11) to the case when the sets are not disjoint.

Theorem 1.14 (General Sum Principle). If A and B are sets, then

|A ∪B| = |A|+ |B| − |A ∩B|,

or equivalently

|A ∪B|+ |A ∩B| = |A|+ |B|.

Problem 1.15. I’m in the mood for a cup of coffee! Let’s say that the nearest place to get
a cup of coffee is four blocks East and three blocks North. Assuming I only walk East or
North, how many different routes can I take to get there if:

(a) The last block I walk is heading North?

(b) The last block I walk is heading East?

(c) I don’t care whether the last block I walk is North or East?

In Problem 1.15, we could describe paths to the coffee shop using expressions like
NNENEEE, where we interpret the expression from left to right as instruction for which
direction to walk at each step. Such expressions have a name. A string of objects of length
k is a linearly ordered arrangements of k objects. The objects in a string may be repeated
unless specified otherwise. For example, NNENEEE is a string of length 7 consisting of
N ’s and E’s. If a string consists of letters, then it may be called a word (we do not require
a word to be in the dictionary!). A bit string is a string consisting of 0’s and 1’s. Each
occurrence of a 0 or 1 in a bit string is called a bit. The strings 010 and 100 are two different
bit strings of length 3.

Example 1.16. How many two-letter words are there using only the letters b, c, d, f?

Solution. We can easily list these, but a different arrangement will illustrate a more powerful
technique.
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

b c d f

b bb bc bd bf
c cb cc cd cf
d db dc dd df
f fb fc fd ff

The rectangular table makes it clear that there are 16 two-letter words using the letters b,
c, d, and f . Another way to see this is to note that there are 4 choices for the first (left-hand)
letter and for each of these there are 4 choices for the right-hand letter, so there are 4 ·4 = 16
words total.

Example 1.17. How many “numbered words” are there consisting of two letters from b, c,
d, and f , followed by one of the digits 1, 2, 3, 4, and 5?

Solution. A geometric display as in Example 1.16 would seem to require three dimensions,
but we can take what we already know and just add a digit to the right:

1 2 3 4 5

bb bb1 bb2 bb3 bb4 bb5
bc bc1 bc2 bc3 bc4 bc5
...

...
...

...
...

...
ff ff1 ff2 ff3 ff4 ff5

There are 16 rows (each with a word from Example 1.16) and five columns, so there are
16 ·5 = 80 two-letter words using b, c, d, and f , followed by a digit from 1, 2, 3, 4, and 5.

If A and B are sets, the Cartesian product of A and B, denoted A × B (read as “A
times B” or “A cross B”), is the set of all ordered pairs where the first component is from
A and the second component is from B. In set-builder notation, we have

A×B := {(a, b) | a ∈ A, b ∈ B} .

Similarly, the Cartesian product of sets A1, . . . , An sets is the collection of n-tuples given
by

A1 × · · · × An := {(a1, . . . , an) | aj ∈ Aj for all 1 ≤ j ≤ n} ,

where Ai is referred to as the ith factor of the Cartesian product. As a special case, the set

A× · · · × A︸ ︷︷ ︸
n factors

is often abbreviated as An .
Cartesian products are named after French philosopher and mathematician René Descartes

(1596–1650).

Example 1.18. If A = {a, b, c} and B = {,,/}, then

A×B = {(a,,), (a,/), (b,,), (b,/), (c,,), (c,/)}.
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

Example 1.19. The standard two-dimensional plane R2 and standard three space R3 are
familiar examples of Cartesian products. In particular, we have

R2 = R× R = {(x, y) | x, y ∈ R}

and
R3 = R× R× R = {(x, y, z) | x, y, z ∈ R}.

Problem 1.20. Consider the sets A and B from Example 1.18.

(a) Find B × A.

(b) Find B ×B.

Problem 1.21. Let A = {1, 2, 3}, B = {1, 2}, and C = {1, 3}. Find A×B × C.

Problem 1.22. If A is a set, then what is A× ∅ equal to?

Problem 1.23. If A and B are both finite sets, find a nice formula for |A×B|.

Problem 1.24. Are collections of words or strings that we encountered earlier in the chapter
just Cartesian products in disguise? Explain.

Problem 1.25. Is a set of dominoes a Cartesian product in disguise? Explain.

We have been dancing around a fundamental counting principle. Let’s state it officially.
There are three progressively more general versions, the first of which we already encountered
in Problem 1.23. The second version officially follows from the first version by induction,
which is a topic we will encounter later. The third version follows from the second by making
a careful use of notation to identify the set O with a Cartesian product.

Theorem 1.26 (Product Principle). Each of the following are referred to as the Product
Principle.

(a) If A and B are finite sets, then

|A×B| = |A| · |B|.

(b) If A1, . . . , Ak are finite sets, then

|A1 × · · · × Ak| = |A1| · · · |Ak|.

(c) If O is the set of outcomes for a k-step process, where for 1 ≤ i ≤ k, there are ni

choices for step i, no matter what earlier choices were made, then

|O| = n1n2 · · ·nk.

The key difference between versions (b) and (c) of the Product Principle is that version (c)
does not assume that the set of choices for step i is independent of the previous choices.
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

Problem 1.27. A fashion-challenged freshman has three pair of pants, five shirts (all t-
shirts, but different patterns) and a pair of sandals. How many different ensembles are
available for this freshman?

Problem 1.28. Suppose you flip a coin fives times in a row, recording the sequence of heads
and tails that you see. How many different sequences of flips are possible?

Problem 1.29. Suppose we roll a six-sided die and then flip a coin. How many distinct
outcomes are possible?

Problem 1.30. How many bit strings of length n are there? How many of these start and
end with the bit 1?

Problem 1.31. How many subsets does a set with n elements have? Make sure you are
taking the case n = 0 into account. You should be able to carefully justify your answer by
cleverly utilizing the Product Principle.

Problem 1.32. How many four-letter words are there using lower-case English letter con-
sonants (including y) that include exactly one occurrence of b?

Problem 1.33. A pass code consists of a string of two or three case-sensitive English letters
followed by three digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). How many different possible pass codes
are there?

So far we have encountered the following fundamental methods for determining the car-
dinality of a set:

• Systematic brute-force (with good bookkeeping);

• Sum Principle: If there are multiple disjoint cases, we can add up the sizes of the
various cases. If you can phrase a problem with “or”, you should consider adding cases.

• Product Principle: If all the elements/outcomes can be constructed using a step-by-
step process, you should multiply the number of ways each step in process can occur.
Be on the look out for the keywords “and” or “then”.

The next result is simply a special case of Theorem 1.11. Sometimes it might be easier
to count the opposite of what you are looking to count and then to subtract from the size of
the universe of discourse. This idea is sometimes referred to as the Subtraction Principle.
Keep this in mind as a method of attack for future problems.

Theorem 1.34 (Subtraction Principle). If A is a subset of a universe of discourse U , then

|U | = |A|+ |Ac| , or equivalently, |A| = |U | − |Ac| .

Problem 1.35. How many words of length 4 are there consisting of lower-case English
letters that utilize at least two x’s? Find the answer in two different ways.

Problem 1.36. How many words of length 6 are there consisting of lower-case English
letters subject to the following constraints?
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CHAPTER 1. SETS AND COUNTING PRINCIPLES

(a) No constraints.

(b) Repetition not allowed.

(c) No instances of letter a.

(d) At least one occurrence of letter a.

Problem 1.37. Six friends sit on one side of long rectangular table.

(a) How many seating arrangements are there?

(b) How many seating arrangements are there if Sally and Maria always sit next to each
other?

The next principle, called the Division Principle, provides a method for ignoring “unim-
portant” differences when counting things. Loosely speaking, the general idea is count a
larger set of distinct objects and then use the Division Principle to “merge” the ones that
are not significantly different from each other. As a motivating example, suppose my kids
have 30 toys scattered around the room. After asking my kids to pick up all the toys and
put each toy in a bin according to what type of toy it is (e.g., Transformer), there ends up
being 6 toys in each bin. In this case, it is easy to see that there must be 5 distinct bins.

Theorem 1.38 (Division Principle). If the finite set A is the union of n pairwise disjoint
subsets each with d elements, then |A| = n · d. Equivalently, n = |A|/d.

Problem 1.39. Six friends sit around a circle to play a game. Rotations of the group do
not constitute different seating orders.

(a) How many circular seating arrangements are there?

(b) How many circular seating arrangements are there if Sally and Maria always sit next
to each other?

Problem 1.40. How many ways can the letters of the word SLOPPY be arranged?

Problem 1.41. It’s Halloween and five students arrive at my office begging for candy. I
happen to have five pieces of candy. Depending on my mood, I may give away none of the
candy, all of the candy, or any amount in between. Assuming I don’t give any student more
than one piece of candy, how many different ways can I distribute the candy? Does it matter
if the pieces of candy are identical or not? If so, count both situations.
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Chapter 2

Functions

Let X and Y be two nonempty sets. A function f from X to Y is a subset of X ×Y such
that for every x ∈ X, there exists a unique y ∈ Y such that (x, y) ∈ f . The set X is called

the domain of f and is denoted by Dom(f) . The set Y is called the codomain of f and

is denoted by Codom(f) while the subset of the codomain defined via

Rng(f) := {y ∈ Y | there exists x such that (x, y) ∈ f}

is called the range of f or the image of X under f .
There is a variety of notation and terminology associated to functions. We will write

f : X → Y to indicate that f is a function from X to Y . We will make use of statements
such as “Let f : X → Y be the function defined via. . . ” or “Define f : X → Y via. . . ”, where
f is understood to be a function in the second statement. Sometimes the word mapping
(or map) is used in place of the word function. If (x, y) ∈ f for a function f , we often write

f(x) = y and say that “f maps x to y” or “f of x equals y”. In this case, x may be called

an input of f and is the preimage of y under f while y is called an output of f and is the
image of x under f . Note that the domain of a function is the set of inputs while the range
is the set of outputs for the function.

Sometimes we can represent functions visual representations called function (or map-
ping) diagrams, where the elements of the domain and codomain are indicated by labeled
nodes and ordered pairs for the function are indicated by an arrow pointing from the node for
input to the node for the output. When drawing function diagrams, it is standard practice
to put the elements for the domain on the left and the elements for the codomain on the
right, so that all directed edges point from left to right. We may also draw an additional
arrow labeled by the name of the function from the domain to the codomain.

Example 2.1. Figure 2.1 depicts a function f : X → Y for the sets X = {a, b, c, d} to
Y = {1, 2, 3, 4}. In this case, we see that Rng(f) = {1, 2, 4}. Moreover, we can write things
like f(a) = 2 and c 7→ 4, and say things like “f maps b to 4” and “the image of d is 1.” Note
that it is perfectly okay to have both b and c mapped to 4.

Sometimes we can define a function using a formula. For example, we can write f(x) =
x2 − 1 to mean that each x in the domain of f maps to x2 − 1 in the codomain. However,
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a

b

c

d

1

2

3

4

X Y

f

Figure 2.1: Function diagram for a function from X = {a, b, c, d, } to Y = {1, 2, 3, 4}.

notice that providing only a formula is ambiguous! A function is determined by its domain,
codomain, and the correspondence between these two sets. If we only provide a description
for the correspondence, it is not clear what the domain and codomain are. Two functions
that are defined by the same formula, but have different domains or codomains are not
equal. It is important to point out that not every function can be described using a formula!
Despite your prior experience, functions that can be represented succinctly using a formula
are rare.

Example 2.2. The function f : R→ R defined via f(x) = x2−1 is not equal to the function
g : N→ R defined by g(x) = x2 − 1 since the two functions do not have the same domain.

Problem 2.3. Provide an example of each of the following. You may draw a function
diagram, write down a list of ordered pairs that represents the assignment, or write a formula
as long as the domain and codomain are clear.

(a) A function f from a set with 4 elements to a set with 3 elements such that Rng(f) =
Codom(f).

(b) A function g from a set with 4 elements to a set with 3 elements such that Rng(g) is
strictly smaller than Codom(g).

Problem 2.4. In high school you may have been told that a graph represents a function if
it passes the vertical line test. Carefully state what the vertical line test says and then
explain why it works.

A piecewise-defined function (or piecewise function) is a function defined by speci-
fying its output on a partition (i.e., “disjoint chunks”) of the domain. Note that “piecewise”
is a way of expressing the function, rather than a property of the function itself.

Example 2.5. The function f : R→ R defined via

f(x) =


x2 − 1, if x ≥ 0,

17, if − 2 ≤ x < 0,

−x, if x < −2
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is an example of a piecewise-defined function.

Problem 2.6. Define f : R \ {0} → R via f(x) = |x|
x

. Express f as a piecewise function.

Problem 2.7. Let n ∈ N. Count all functions f : {1, 2, . . . , n} → {0, 1}. How is this
problem related to Problem 1.30? How is this problem related to Problem 1.31?

Let f : X → Y be a function. We define the following.

(a) The function f is said to be injective (or one-to-one) if for all y ∈ Rng(f), there
is a unique x ∈ X such that y = f(x). Said another way, f is one-to-one provided
f(x) = f(y) implies that x = y, or equivalently x 6= y (in X) implies f(x) 6= f(y).
That is, different inputs produce different outputs.

(b) The function f is said to be surjective (or onto) if for all y ∈ Y , there exists x ∈ X
such that y = f(x).

(c) If f is both injective and surjective, we say that f is bijective.

Problem 2.8. Assume that X and Y are finite sets. Provide an example of each of the
following. You may draw a function diagram, write down a list of ordered pairs, or write a
formula as long as the domain and codomain are clear.

(a) A function f : X → Y that is injective but not surjective.

(b) A function f : X → Y that is surjective but not injective.

(c) A function f : X → Y that is a bijection.

(d) A function f : X → Y that is neither injective nor surjective.

Problem 2.9. Determine whether each of the following functions is injective, surjective,
both, or neither.

(a) Define f : R→ R via f(x) = x2

(b) Define g : R→ [0,∞) via g(x) = x2

(c) Define h : R→ R via h(x) = x3

(d) Define k : R→ R via k(x) = x3 − x

(e) Define c : R× R→ R via c(x, y) = x2 + y2

(f) Define f : N→ N× N via f(n) = (n, n)

(g) Define g : Z→ Z via

g(n) =

{
n
2
, if n is even

n+1
2
, if n is odd

13



CHAPTER 2. FUNCTIONS

(h) Define ` : Z→ N via

`(n) =

{
2n+ 1, if n ≥ 0

−2n, if n < 0

Problem 2.10. Suppose X ⊆ R and f : X → R is a function. Fill in the blank with the
appropriate word.

The function f : X → R is if and only if every horizontal line hits
the graph of f at most once.

This statement is often called the horizontal line test. Explain why the horizontal line
test is true. What kind of theorems to we get if we replace “at most once” with either “at
least once” or “exactly once”?

Problem 2.11. Suppose f : A→ B is a function for finite sets A and B. Explain why each
of the following statements is true.

(a) If f is an injection, then |A| ≤ |B|.

(b) If f is a surjection, then |A| ≥ |B|.

(c) If f is a bijection, then |A| = |B|.

Problem 2.12. Let A and B be nonempty finite sets with |A| = n and |B| = k.

(a) How many different functions are there from A to B?

(b) If n ≤ k, how many injective functions are there from A to B?

(c) If n = k, how many bijective functions are there from A to B?

(d) If n ≥ k, do you think it would be challenging to count the number of surjective
functions from A to B?

The next theorem states an important counting technique, which we refer to as the
Bijection Principle.

Theorem 2.13 (Bijection Principle). If |B| = k and there exists a bijection between A and
B, then |A| = k, as well.

Problem 2.14. Let A denote the set of ways to distribute candy in Problem 1.41 (in the
situation where the candy is all identical) and let B denote the set of sequence of coin flips
in Problem 1.28. Find a bijection f : A→ B.

Problem 2.15. Utilize a bijection to connect Problems 1.30 and 1.31.

The next problem illustrates that some care must be taken when attempting to define a
function.

Problem 2.16. For each of the following, explain why the given description does not define
a function.
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CHAPTER 2. FUNCTIONS

(a) Define f : {1, 2, 3} → {1, 2, 3} via f(a) = a− 1.

(b) Define g : N→ Q via g(n) = n
n−1 .

(c) Let A1 = {1, 2, 3} and A2 = {3, 4, 5}. Define h : A1 ∪ A2 → {1, 2} via

h(x) =

{
1, if x ∈ A1

2, if x ∈ A2.

(d) Define s : Q→ Z via s(a/b) = a+ b.

In mathematics, we say that an expression is well defined (or unambiguous) if its
definition yields a unique interpretation. Otherwise, we say that the expression is not well
defined (or is ambiguous). For example, if a, b, c ∈ R, then the expression abc is well
defined since it does not matter if we interpret this as (ab)c or a(bc) since the real numbers
are associative under multiplication.

When we attempt to define a function, it may not be clear without doing some work
that our definition really does yield a function. If there is some potential ambiguity in the
definition of a function that ends up not causing any issues, we say that the function is
well defined. However, this phrase is a bit of misnomer since all functions are well defined.
The issue of whether a description for a proposed function is well defined often arises when
defining things in terms of how an element of the domain is written. For example, the
descriptions given in Parts (c) and (d) of Problem 2.16 are not well defined.
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Chapter 3

Permutations

For n ∈ N, we define [n] := {1, 2, . . . , n} . That is, [n] is just clever shorthand for the set

containing 1 through n. This notation is meant to resemble interval notation.
For k ∈ N and a nonempty set A, a k-permutation of A is an injective function w :

[k] → A. The set of all k-permutations of A is denoted by SA,k . If A happens to be

the set [n], we use the notation Sn,k . And if n = k, we write Sn := Sn,n and refer to

each n-permutation in Sn as a permutation. Let P (n, k) := |Sn,k| . By convention, we set

P (n, 0) := 1 , including the case when n = 0.

Problem 3.1. Complete the following.

(a) Write down all of the elements in S3. What is P (3, 3)?

(b) Write down all of the elements in S4,3. What is P (4, 3)?

The game of chess is played on an 8×8 grid. We will consider chessboards with arbitrary
dimensions, say n× k (n rows, k columns) with 1 ≤ k ≤ n. A rook is a castle-shaped piece
that can move horizontally or vertically any number of squares. In a typical chess game,
there are two black rooks and two white rooks, but for our purposes we will assume we have
k rooks, where all the rooks are the same color. We say that an arrangement of rooks on an
n×k chessboard is non-attacking if no two rooks lie in the same row or column. Figure 3.1
shows one possible non-attacking rook arrangement on an 6× 4 chessboard.

Problem 3.2. Consider the collection of k-permutations in Sn,k with 1 ≤ k ≤ n. Explain
why P (n, k) is equal to the number of non-attacking rook arrangements on an n × k chess
board. Hint: Establish a bijection between the collection of non-attacking rook arrangements
on an n× k chess board and the collection of k-permutations.

Recall that for n ∈ N, the factorial of n is defined n! := n · (n− 1) · · · 2 · 1 , and we

define 0! := 1 for convenience.

Theorem 3.3. For 1 ≤ k ≤ n, we have

P (n, k) = n · (n− 1) · · · (n+ 1− k) =
n!

(n− k)!
.

16
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R

R

R

R

Figure 3.1: A non-attacking rook arrangement on a 6× 4 chessboard.

Note that as a special case of the formula above, we have |Sn| = P (n, n) = n! and we
obtain

P (0, 0) =
0!

(0− 0)!
= 1 and P (n, 0) =

n!

(n− 0)!
= 1.

We can think of a k-permutation as a linearly-ordered arrangement (i.e., string) of k of
n objects. That is, we can denote a k-permutation as a string w = w(1)w(2) · · ·w(k), where
each w(i) ∈ [n] and w(i) 6= w(j) for i 6= j. For example, if n = 6 and k = 4, then the string
3624 represents the 4-permutation w : [4]→ [6] given by

w(1) = 3, w(2) = 6, w(3) = 2, w(4) = 4.

Do you see why this 4-permutation corresponds to the non-attacking rook arrangement in
Figure ???

In the case when n = k, we can denote a permutation as a string w = w(1)w(2) · · ·w(n),
where each entry w(i) appears once. For example, the string w = 241365 represents the
bijection w : [6]→ [6] given by

w(1) = 2, w(2) = 4, w(3) = 1, w(4) = 3, w(5) = 6, w(6) = 5.

Problem 3.4. How many strings of length three are there using letters from {a, b, c, d, e, f, g}
if the letters in the string are not repeated?

Problem 3.5. There are 8 finalists at the Olympic Games 100 meters sprint. Assume there
are no ties.

(a) How many ways are there for the runners to finish?

(b) How many ways are there for the runners to get gold, silver, bronze?

(c) How many ways are there for the runners to get gold, silver, bronze given that Usain
Bolt is sure to get the gold medal?

17
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Problem 3.6. If 1 ≤ k ≤ n, prove that P (n, k) = P (n− 1, k) + kP (n− 1, k − 1) , both

using the formula in Theorem 3.3, and separately using the definition of k-permutations
together with Product and Sum Principles. The latter approach is an example of a combi-
natorial proof.

The formula in the previous problem is an example of a recurrence relation, which
will be a topic of focus in a later chapter.

Interpreting a permutation as a linearly ordered arrangement of object (i.e., string), a
circular permutation is similar to a permutation except the objects are arranged on a
circle, so that there is no beginning or end. We can present a circular permutation w of
length n as in Figure 3.2. Each w(i) is a distinct value from [n], and reading clockwise we
encounter w(1), w(2), . . . , w(n), so that w(n) is placed next to w(1). Any circular rotation
yields the same circular permutation.

w(1)

w(n)

w(n− 1)

. . .

w(i)

. .
.

w(3)

w(2)

Figure 3.2: Representation of a circular permutation.

We encountered circular permutations back in Problem 1.39 when we counted circular
seating arrangements of six friends sitting around a circle to play a game. Recall that the
trick in that problem was to make use of the Division Principle.

Problem 3.7. How many circular permutations are there of length n?

Moving away from circular permutations and back to k-permutations, recall that we can
represent each k-permutation of [n] as a string of length k, where each entry is from [n] and
no repeats are allowed. What if we allow repeats?

Problem 3.8. How many ways can the letters of the word PRESCOTT be arranged?

18
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Problem 3.9. How many ways can the letters of the word POPPY be arranged? Try to
solve this problem in two different ways.

Consider a set of n objects that are not necessarily distinct, with p different types objects
and ni objects of type i (for i = 1, 2, . . . , p), so that n = n1 + · · · + np. An ordered
arrangement of these n objects is called a generalized permutation and the number of

such arrangements is denoted by P (n;n1, . . . , np) . For example, the number of words we can

make out of the letters of POPPY is P (5; 3, 1, 1). The following theorem follows immediately
from the Division Principle.

Theorem 3.10. For n, n1, . . . , np ∈ N such that n = n1 + · · ·+ np, we have

P (n;n1, . . . , np) =
n!

n1! · · ·np!
.

Problem 3.11. How many ways can the letters of the word MISSISSIPPI be arranged?

Problem 3.12. In Professor X’s class of 9 graduate students she will give two A’s, one B,
and six C’s. How many possible ways are there to do this?

Problem 3.13. Let’s revisit Problem 1.15, which involved my walk to get coffee. When we
attacked that problem, we did a lot of brute force. Do we now have an easier method?

Problem 3.14. In how many ways can a deck of 52 cards be dealt to four players, say N ,
E, S, and W?
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Combinations

The notion of k-permutations captures arrangements of distinct objects where order matters.
But what should we do if we want to capture a situation where the order of the objects does
not matter? Since the order of the objects in a set does not matter, this is the model we
should use.

If A is a set and B ⊆ A with |B| = k, we refer to B as a k-subset of A. The collection
of all k-subsets of A is defined via(

A

k

)
:= {B ⊆ A | |B| = k}.

The binomial coefficient is defined via(
n

k

)
:= number of k-subsets of an n-element set.

In particular, if |A| = n, then |
(
A
k

)
| =

(
n
k

)
. We read “

(
n
k

)
” as “n choose k”. Alternate

notations for binomial coefficients include C(n, k) and nCk. We will see later why
(
n
k

)
is

referred to as a binomial coefficient.

Example 4.1. If A = {a, b, c, d}, then(
A

2

)
= {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},

which implies that
(
4
2

)
= 6.

Problem 4.2. For any A, including the empty set, what is
(
A
0

)
? For n ≥ 0, what is

(
n
0

)
equal to?

Problem 4.3. For n ≥ 0, what is
(
n
n

)
equal to?

If we let n and k vary, we can organize the binomial coefficients in a triangular array,
often referred to as Pascal’s Triangle. See Table 4.1.
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n \ k 0 1 2 3 4 5 6

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Table 4.1: Pascal’s Triangle of binomial coefficients.

Problem 4.4. Suppose you have a pool of 6 applicants for a job opening. Let’s assume you
believe the values in Table 4.1.

(a) How many ways can you choose 3 of the 6 applicants to interview?

(b) How many ways can you hire 3 of the 6 applicants for 3 distinct jobs?

Problem 4.5. What are the row sums in Pascal’s Triangle? That is, what is the following
sum equal to for any n ≥ 0?

n∑
k=0

(
n

k

)
:=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

Problem 4.6. Using the meanings of k-subset and k-permutation, explain why

P (n, k) =

(
n

k

)
· k!.

Using the previous problem, we immediately get the following handy formula for com-
puting binomial coefficients.

Theorem 4.7. For 0 ≤ k ≤ n, we have(
n

k

)
=

n!

k!(n− k)!
=
P (n, k)

k!
.

In the last expression above, the numerator of P (n,k)
k!

is counting how many distinct ar-
rangements (order matters) there are of k objects taken from n objects and the denominator
is essentially unordering arrangements (by Division Principle) that consist of the same ob-
jects.

Problem 4.8. A state senate consists of 19 Republicans and 14 Democrats. In how many
ways can a committee be chosen if:

(a) The committee contains 6 senators without regard to party?
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(b) The committee contains 3 Republicans and 3 Democrats?

Problem 4.9. How many bit strings of length 10 have exactly three 1’s?

Problem 4.10. How many bit strings of length 6 have an odd number of 0’s?

Problem 4.11. As we noted earlier, we did quite a bit of brute force to determine how
many paths I could take to get coffee in Problem 1.15. Find a solution that utilizes binomial
coefficients.

Problem 4.12. How many strings of 10 lower-case English letters have exactly two g’s and
exactly three v’s?

Problem 4.13. Assume 1 ≤ k ≤ n.

(a) Using the definition of
(
n
k

)
in terms of k-subsets (as opposed to the formula in Theo-

rem 4.7), explain why (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

This identity is often called Pascal’s Identity (or Pascal’s Recurrence).

(b) Connect the formula above with Problem 1.15 involving my walk to get coffee.

Problem 4.14. Assume 1 ≤ k ≤ n. It turns out that(
n

k

)
=

(
n

n− k

)
.

(a) Prove the identity above using the formula for
(
n
k

)
given in Theorem 4.7.

(b) Explain why the identity is true by using the definition of
(
n
k

)
in terms of k-subsets.

The upshot is that each row of Pascal’s Triangle is a palindrome.

Problem 4.15. Explain why

1 + 2 + · · ·+ n =

(
n+ 1

2

)
by counting the number of handshakes that could occur among a group of n + 1 people in
two different ways.

By the way, the number defined by tn := 1 + 2 + · · ·+ n is called the nth Triangular
number (due to the shape we get by representing each number in the sum by a stack of
balls).

Problem 4.16. Without appealing to the previous problem, find a visual proof of the
following:

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Hint: Consider a rectangular array of balls that has n rows and n+ 1 columns.
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Problem 4.17. Consider the linear equation x1 +x2 +x3 = 11. How many integer solutions
are there if:

(a) x1, x2, x3 ≥ 0?

(b) x1, x2, x3 > 0?

(c) x1 ≥ 1, x2 ≥ 0, x3 ≥ 2?

Problem 4.18. How many ways can you distribute 5 identical lollipops to 6 kids?

These last two problems illustrate a technique known as stars and bars. In general, n
stars tally the number of objects and k − 1 bars separate them into k distinct categories.

Theorem 4.19. The number of possible collections of n objects of k different types is(
n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)
.

Problem 4.20. Zittles come in 5 colors: green, yellow, red, orange, and purple. How many
different collections of 32 Zittles are possible?
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The Binomial Theorem

Recall that
(
n
k

)
counts the number of subsets of size k taken from a set of size n. Each

(
n
k

)
is

called a binomial coefficient, which likely seems like a strange name. Why are these numbers
called binomial coefficients? In general a binomial is just a polynomial with two terms. Let’s
see what we can discover.

We see that

(x+ y)2 = (x+ y)(x+ y)

= xx+ xy + yx+ yy

= x2 + 2xy + y2.

The coefficients in this expansion are 1, 2, 1. Hey, we saw those in row n = 2 of Pascal’s
Triangle! Let’s try a larger example. We see that

(x+ y)3 = (x+ y)2(x+ y)

= (xx+ xy + yx+ yy)(x+ y)

= xxx+ xyx+ yxx+ yyx+ xxy + xyy + yxy + yyy

= x3 + 3x2y + 3xy2 + y3.

This time the coefficients are 1, 3, 3, 1, which is the next row of Pascal’s Triangle. What’s
going on here?

Consider the expansion of (x+y)n. The key observation is that before commuting factors
and collecting like terms, the terms in the expansion consist of all possible products where we
choose either x or y from each factor. Each such term will consist of n letters. In particular,
if there are k copies of x in a term, there will be n−k copies of y (and vice versa). Moreover,
every possible configuration of k copies of x (i.e., location of the x’s in the term before doing
any commuting with x and y) will be represented. This means there will be precisely

(
n
k

)
many terms with k copies of x (and n − k copies of y). Thus, when we commute and then
collect like terms, the coefficient on xkyn−k will indeed be

(
n
k

)
. This leads us to the following

remarkable fact, known as the Binomial Theorem.

Theorem 5.1 (The Binomial Theorem). For n ≥ 0, we have

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.
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In light of the Binomial Theorem, the binomial coefficients are the positive integers
that occur as coefficients in the expansions of powers of binomials. Said another way, the
coefficients in the expansion of (x+ y)n correspond to the entries in the nth row of Pascal’s
Triangle.

Problem 5.2. Expand each of the following.

(a) (a+ b)6

(b) (2x− 3y)4

Problem 5.3. What is the coefficient of x12 in (x+ 2)15?

Problem 5.4. What is the coefficient of x6y6 in (x3 + 2y2)5?

Problem 5.5. In Problem 4.5, we discovered the following combinatorial identity:

2n =
n∑

k=0

(
n

k

)
:=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

Prove this fact using the Binomial Theorem.

Problem 5.6. Determine what the sum
n∑

k=0

2n

(
n

k

)
is equal to.

Problem 5.7. Complete each of the following.

(a) Expand (1 + t)n.

(b) Assuming n ≥ 1, take the derivative with respect to t of each side of the identity you
discovered in Part (a).

(c) What happens if t = 1?

Problem 5.8. Suppose we have n ≥ 1 people.

(a) Let 1 ≤ k ≤ n. How many ways can we choose a team of k people to play dodgeball
where one of the people on the team is designated team captain?

(b) How many ways can we choose of team of any size from 1 up to n where one of the
people on the team is designated team captain?
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Chapter 6

Pigeonhole Principle

The Pigeonhole Principle is a very natural idea. It says: If a collection of at least n + 1
objects is put into n boxes, then there is a box with at least two things in it. The Pigeonhole
Principle has surprisingly deep applications. We will start with a few examples.

Example 6.1. Back in Problem 2.11, we implicitly used the Pigeonhole Principle when we
argued that if f : A→ B is a function for finite sets A and B, then

(a) If f is an injection, then |A| ≤ |B|.

(b) If f is a surjection, then |A| ≥ |B|.

Problem 6.2. A box has blue, green, yellow, red, orange, and white balls. How many must
be drawn without looking to be sure of getting at least two of the same color?

Problem 6.3. Prove that if seven distinct numbers are selected from {1, 2, . . . , 11}, then
there exists a pair of numbers that sum to 12.

We would like to generalize the Pigeonhole Principle, but first we need a useful function.

The ceiling function of a real number x, written dxe , is the smallest integer greater than

or equal to x. That is, dxe is an integer, dxe ≥ x, and there is no other integer between dxe
and x. You can think of it as the “round-up to an integer” function.

Example 6.4. For example, dπe = 4, d−πe = −3, and d7e = 7.

We can now generalize the Pigeonhole Principle as follows.

Theorem 6.5 (Generalized Pigeonhole Principle). If n objects are placed in m boxes, then
there is a box with at least d n

m
e objects.

Problem 6.6. If 20 buses seating at most 50 carry 621 passengers to a ball game, then some
bus must have at least passengers.

Problem 6.7. How many balls must be drawn from the box in Problem 6.2 in order to be
sure of getting at least 4 of the same color?
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Problem 6.8. Suppose n ∈ N and let S = {1, 2, . . . , 2n}. Argue that if we choose n + 1
distinct elements from the set S, then among those elements there must exist a pair of
numbers such that one is a multiple of the other. Hint: Every number in S is of the form
2km, where k is a nonnegative integer and m is odd.

Problem 6.9. Explain why every collection of ten distinct integers x1, x2, . . . , x10 must have
at least one subset whose sum of the elements in the subset is divisible by 10.
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Chapter 7

Principle of Inclusion and Exclusion

We now introduce a concept known as the Principal of Inclusion and Exclusion. Recall
Theorem 1.14, which states that if A and B are sets, then

|A ∪B| = |A|+ |B| − |A ∩B|.

Problem 7.1. How many integers between 1 and 881 inclusively are divisible by 3 or 5?

But what do we do if we have more than two sets? Let’s first examine the situation with
three sets.

Problem 7.2. If A,B, and C are sets, then find a formula in the same vein as Theorem 1.14
for |A ∪B ∪ C|.

The upshot is that we add “singles” subtract “doubles” and add “triples”.

Problem 7.3. In the Natteranian township, 750 of the residents have a smart phone, 620
have a laptop computer, 480 have a desktop computer, 420 have both a laptop and a smart
phone, 390 have both a smart phone and a desktop, 212 have both a laptop and a desktop
computer and 164 have all three items.

(a) How many residents have at least one of the three items?

(b) How many residents do not have desktop computer?

(c) How many residents have a smart phone or a laptop?

(d) How many have a smart phone or a laptop but not a desktop?

We can generalize to any finite number of sets.

Theorem 7.4 (Principal of Inclusion and Exclusion). The number of elements in the union
of finite sets A1, A2, . . . , An is

|A1 ∪ · · · ∪An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n+1|A1 ∩A2 · · · ∩An|.
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Problem 7.5. How many nonnegative integer solutions does the equation x1+x2+x3+x4 =
25 have such that x1 < 7, x2 < 5, and x4 < 8?

We now discuss one important application of the Principle of Inclusion and Exclusion.
Formally, a derangement is a permutation w : [n]→ [n] such that w(i) 6= i for all 1 ≤ i ≤ n
(i.e., w has no fixed points). That is, a derangement is a special rearrangement of objects
such that none is in its original spot.

Problem 7.6. How many derangements of CAT are there?

Let dn denote the number of derangements of [n]. We set d0 := 1.

Problem 7.7. For 1 ≤ i ≤ n, let Fi be the set of permutations that fix i.

(a) Explain why
dn = |F c

1 ∩ · · · ∩ F c
n|.

(b) Explain why

dn = n!−
∑
i

|Fi|+
∑
i<j

|Fi ∩ Fj| −
∑
i<j<k

|Fi ∩ Fj ∩ Fk|+ · · ·+ (−1)n|F1 ∩ · · · ∩ Fn|.

(c) Explain why the number of derangements of [n] is

dn = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

)
= n!

n∑
k=0

(−1)k

k!
.

Problem 7.8. Using the previous problem, verify that we got the right answer to Prob-
lem 7.6.

Problem 7.9. If 7 hats are left at the hat-check window, in how many ways can they be
returned so that no one gets the correct hat?

Now, just for funsies. . . from second semester calculus, we know

ex =
∞∑
k=0

xk

k!
,

which implies that

e−1 =
∞∑
k=0

(−1)k

k!
.

Using Part (c) of Problem 7.7, we see that

lim
n→∞

dn
n!

= lim
n→∞

n∑
k=0

(−1)k

k!
=

1

e
≈ 0.367879.

In other words, when n is large, the probability of selecting a derangement at random from
the collection of permutations of n is approximately 1/e. As n increases, the approximation
improves. Boom.
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Mathematical Induction

In this chapter, we introduce mathematical induction, which is a proof technique that
is useful for proving statements of the form “For all natural numbers n, P (n)”, or more
generally “For all integers n ≥ a, P (n)”, where P (n) is some predicate. Loosely speaking, a
predicate P (n) is some statement about n. For example, “n is prime” is a predicate.

Consider the claims:

(a) For all n ∈ N, 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

(b) For all n ∈ N, n2 + n+ 41 is prime.

Let’s take a look at potential proofs.

“Proof” of (a). If n = 1, then 1 = 1(1+1)
2

. If n = 2, then 1 + 2 = 3 = 2(2+1)
2

. If n = 3, then

1 + 2 + 3 = 6 = 3(3+1)
2

, and so on.

“Proof” of (b). If n = 1, then n2+n+41 = 43, which is prime. If n = 2, then n2+n+41 = 47,
which is prime. If n = 3, then n2 + n+ 41 = 53, which is prime, and so on.

Are these actual proofs? No! In fact, the second claim is not even true. If n = 41, then
n2 + n+ 41 = 412 + 41 + 41 = 41(41 + 1 + 1), which is not prime since it has 41 as a factor.
It turns out that the first claim is true, but what we wrote cannot be a proof since the same
type of reasoning when applied to the second claim seems to prove something that is not
actually true. We need a rigorous way of capturing “and so on” and a way to verify whether
it really is “and so on.”

We will not formally prove the following theorem, but instead rely on our intuition.

Theorem 8.1 (Principle of Mathematical Induction). Let P (1), P (2), P (3), . . . be a sequence
of statements, one for each natural number. Assume

(i) P (1) is true, and

(ii) for all k ≥ 1, if P (k) is true, then P (k + 1) is true.

Then P (n) is true for all n ∈ N.
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The Principle of Mathematical Induction (or PMI for short) provides us with a process
for proving statements of the form “For all natural numbers n, P (n),” where P (n) is some
predicate involving n. Hypothesis (i) above is called the base step (or base case) while
(ii) is called the inductive step.

Intuitively, here is what the Principle of Mathematical Induction is saying. Think of the
statements P (1), P (2), P (3), . . . as being rungs of a ladder. The base step indicates that we
can step onto the first rung of the ladder while the inductive step tells us that if we are on a
rung of the ladder we can always move up to the next rung. The Principle of Mathematical
Induction asserts that if we can achieve these two things, then we can climb the entire infinite
ladder. Do you agree that this seems reasonable?

You should not confuse mathematical induction with inductive reasoning associated with
the natural sciences. Inductive reasoning is a scientific method whereby one induces general
principles from observations. On the other hand, mathematical induction is a deductive form
of reasoning used to establish the validity of a proposition.

Here is the general structure for a proof by induction.

Proof. We proceed by induction.

(i) Base step: [Verify that P (1) is true. This often, but not always, amounts to
plugging n = 1 into two sides of some claimed equation and verifying that both
sides are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all k ∈ N, if P (k) is true, then
P (k + 1) is true.”] Let k ∈ N and assume that P (k) is true. [Do something to
derive that P (k + 1) is true.] Therefore, P (k + 1) is true.

Thus, by induction, P (n) is true for all n ∈ N.

Problem 8.2. Conjecture a “nice” formula for the following summation and then prove
your claim using induction:

n∑
i=1

(2i− 1) := 1 + 3 + 5 + · · ·+ (2n− 1).

Independent of induction, can you think of a nice visual proof of this result?

Problem 8.3. Prove the first claim that we introduced at the beginning of the chapter using
induction. That is, prove that for all n ∈ N,

n∑
i=1

i =
n(n+ 1)

2
.

Problem 8.4. Prove that for all n ∈ N, 3 divides 4n − 1.

Problem 8.5. Consider a grid of squares that is 2n squares wide by 2n squares long, where
n ∈ N. One of the squares has been cut out, but you do not know which one! You have a
bunch of L-shapes made up of 3 squares. Prove that you can perfectly cover this chessboard
with the L-shapes (with no overlap) for any n ∈ N. Figure 8.1 depicts one possible covering
for the case involving n = 2 and a fixed cut-out square.
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cut-out square

Figure 8.1: One possible covering for the case involving n = 2 for Problem 8.5.

Mathematical induction can actually be used to prove a broader family of results; namely,
those of the form “For all integers n ≥ a, P (n)”, where a ∈ Z. Theorem 8.1 handles the
special case when a = 1. The ladder analogy from earlier holds for this more general
situation, too.

Theorem 8.6 (Generalized PMI). Let P (a), P (a+ 1), P (a+ 2), . . . be a sequence of state-
ments, one for each integer greater than or equal to a. Assume that

(i) P (a) is true, and

(ii) for all k ≥ a, if P (k) is true, then P (k + 1) is true.

Then P (n) is true for all integers n ≥ a.

Here is the general structure for a proof by induction when the base case does not
necessarily involve a = 1.

Proof. We proceed by induction.

(i) Base step: [Verify that P (a) is true. This often, but not always, amounts to
plugging n = a into two sides of some claimed equation and verifying that both
sides are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all k ≥ a, if P (k) is true, then
P (k + 1) is true.”] Let k ≥ a be an integer and assume that P (k) is true. [Do
something to derive that P (k + 1) is true.] Therefore, P (k + 1) is true.

Thus, by induction, P (n) is true for all integers n ≥ a.

We already encountered the next result back Problem 1.31, but let’s see if we can use
induction to prove it.
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Problem 8.7. Use induction to prove that if A is a finite set with n elements, then A has
2n subsets.

Problem 8.8. Determine when n + 1 < n2 for integer values and prove the claim using
mathematical induction.

Problem 8.9. Determine when n2 < 2n for integer values and prove the claim using math-
ematical induction.

There is another formulation of induction, where the inductive step begins with a set of
assumptions rather than one single assumption. This method is sometimes called complete
induction or strong induction.

Theorem 8.10 (Principle of Complete Mathematical Induction). Let P (1), P (2), P (3), . . .
be a sequence of statements, one for each natural number. Assume that

(i) P (1), P (2), . . . , P (m) is true for some m ≥ 1, and

(ii) For all k ∈ N with m ≤ k, if P (j) is true for all j ∈ N such that m ≤ j ≤ k, then
P (k + 1) is true.

Then P (n) is true for all n ∈ N.

Note the difference between ordinary induction (Theorems 8.1 and 8.6) and complete in-
duction. For the induction step of complete induction, we are not only assuming that P (k) is
true, but rather that P (j) is true for all j from m to k. Despite the name, complete induction
is not any stronger or more powerful than ordinary induction. It is worth pointing out that
anytime ordinary induction is an appropriate proof technique, so is complete induction. So,
when should we use complete induction?

In the inductive step, you need to reach P (k + 1), and you should ask yourself which of
the previous cases you need to get there. If all you need is the statement P (k), then ordinary
induction is the way to go. If, for example, two preceding cases, P (k − 1) and P (k), are
necessary to reach P (k + 1), then complete induction is appropriate. In the extreme, if one
needs the full range of preceding cases (i.e., all statements P (1), P (2), . . . , P (k)), then again
complete induction should be utilized.

Note that in situations where complete induction is appropriate, it might be the case
that you need to verify more than one case in the base step. The number of base cases to
be checked depends on how far one needs to “look back” in the induction step.

Here is the general structure for a proof by complete induction, where the base case
includes n = 1 and possibly more.

Proof. We proceed by strong induction.

(i) Base step: [Verify that each of the statements P (1), P (2), . . . , P (m) are true.
The value of m depends on the statement.]

(ii) Inductive step: [Your goal is to prove “For all k ∈ N with m ≤ k, if P (j) is true
for all j ∈ N such that m ≤ j ≤ k, then P (k + 1) is true.”] Let k ∈ N with
m ≤ k and suppose P (j) is true for all m ≤ j ≤ k. [Do something to derive that
P (k + 1) is true.] Therefore, P (k + 1) is true.
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Thus, by complete induction, P (n) is true for all n ∈ N.

When tackling the remaining problems in this chapter, think carefully about how many
base steps you must verify.

Problem 8.11. The Fibonacci sequence is given by f1 = 1, f2 = 1, and fn = fn−1 + fn−2
for all natural numbers n ≥ 3. Prove that fn < 2n for all n ∈ N.

Recall that Theorem 8.6 generalized Theorem 8.1 and allowed us to handle situations
where the base case was something other than P (1). We can generalize complete induction
in the same way, but we will not write this down as a formal theorem.

Problem 8.12. Prove that every amount of postage that is at least 12 cents can be made
from 4-cent and 5-cent stamps.

Problem 8.13. Consider a grid of squares that is 2 squares wide and n squares long. Using
n dominoes that are 1 square by 2 squares, there are many ways to perfectly cover this grid
with no overlap. How many? Prove your answer.

One final thing worth mentioning is that we did not write down a rigorous proof of the
Principle of Inclusion and Exclusion, which we encountered in Chapter 7. However, this
omission could be remedied using induction. That is, using induction, we could prove that
for all n ∈ N and finite sets A1, . . . , An, we have

|A1∪· · ·∪An| =
∑
i

|Ai|−
∑
i<j

|Ai∩Aj|+
∑
i<j<k

|Ai∩Aj∩Ak|−· · ·+(−1)n+1|A1∩A2 · · ·∩An|.

If n = 1, the expression above simply says |A1| = |A1|, which is certainly true. For n = 2,
we have

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|,

which is the General Sum Principle that we encountered in Theorem 1.14. The inductive
step is a bit “messy”, so we will omit it, but if you are interested, you can find a complete
proof here.
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Chapter 9

Sequences and Recurrence Relations

In this chapter we will study sequences of numbers that are built recursively. Technically, a
sequence (of real numbers) is a function a from N to R. If n ∈ N, it is common to write
an := a(n). We refer to an as the nth term of the sequence. We will abuse notation and
associate a sequence with its list of outputs, namely:

(an)∞n=1 := (a1, a2, . . .) ,

which we may abbreviate as (an) . Sometimes we may start our sequences at n = 0 as

opposed to n = 1. That is, we may allow the domain of a sequence to be N ∪ {0}.

Example 9.1. Define a : N→ R via an = 1
2n

. Then we have

a =

(
1

2
,
1

4
, . . .

)
=

(
1

2n

)∞
n=1

.

It is important to point out that not every sequence has a description in terms of an
algebraic formula. For example, we could form a sequence out of the digits to the right of
the decimal in the decimal expansion of π, namely the nth term of the sequence is the nth
digit to the right of the decimal. But then there is no nice algebraic formula for describing
the nth term of this sequence.

Loosely speaking, a sequence of numbers is defined recursively if the nth term of the
sequence is defined in terms of “earlier” terms of the sequence. We have already encountered
one famous example of a sequence being defined recursively, namely the Fibonacci sequence
(fn), which we defined by f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. The equation
fn = fn−1 + fn−2 is the recurrence relation while f1 = 1 and f2 = 1 are the initial
conditions. It is important to emphasize that we cannot define the Fibonacci number
using only the recurrence relation since otherwise, we would not be able to “get started”
with the recurrence.

We have also encountered a few recurrence relations of a different flavor that arise out of
two-dimensional arrays of numbers. For example:

(a) Number of k-permutations of [n]: For 1 ≤ k ≤ n,

P (n, k) = P (n− 1, k) + kP (n− 1, k − 1).
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(b) Number of k-subsets of [n]: For 1 ≤ k ≤ n,(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

(c) Number of set partitions of [n] with k blocks: For 1 ≤ k ≤ n,{
n
k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1
k

}
.

Notice that each of the descriptions above are not sufficient without also providing a way to
“get started”. For the two-dimensional case, the initial conditions are often called boundary
conditions. For the rest of this chapter, we will focus on one-dimensional sequences.

Here is an important general principle.

Theorem 9.2. If two sequences satisfy the same recurrence relation and initial conditions,
then the two sequences must be equal.

Problem 9.3. Recall that a composition of n with k parts is an ordered list of k positive
integers whose sum is n, denoted α = (α1, . . . , αk). We say that αi is the ith part.

(a) How many compositions of n have only odd parts?

(b) How many compositions of n have parts of size 1 and 2 only?

Problem 9.4. Prove that fn+1 =
∑
k≥0

(
n− k
k

)
by utilizing one of the parts from Prob-

lem 9.3. What does this identity tell us about Pascal’s Triangle?

Problem 9.5. For each of the following recursively defined sequences, generate the first few
terms. If possible, find an explicit formula for the terms of the sequence.

(a) a1 = 2, an = an−1 + 7 for n ≥ 2.

(b) a0 = 1, an = 2an−1 for n ≥ 1.

(c) a0 = 0, an = nan−1 for n ≥ 1.

(d) a0 = 0, an = an−1 + n for n ≥ 1.

(e) a0 = 0, an = an−1 +
n∑

i=0

(i+ n) for n ≥ 1.

By solving a recurrence relation together with its initial conditions we mean finding an
explicit expression (sometimes called a closed form) for an arbitrary term an as a function
of n (but no earlier terms of the sequence). The explicit expression for an is called the
solution of the recurrence relation. For example, each time we found an explicit formula for
the nth term of a sequence in the previous problem, we were solving the recurrence relation
and the corresponding expression we found is the solution. By the general solution of a
recurrence relation, we mean the set of its solutions given any initial conditions.
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Problem 9.6. Find the general solution for an = 2an−1 if the first term of the sequence is
a0. What if the sequence starts at a1?

It’s important to point out that finding a solution to a recurrence relation can be quite
complicated, maybe even impossible! However, verifying whether a proposed solution is
correct or not is straightforward.

Problem 9.7. Consider the recurrence relation an = an−1+6an−2. Is an = (−2)n a solution?
How about an = 3n? How about an = 5(−2)n + 7 · 3n?

We now turn our attention to two special classes of recurrence relations. An arithmetic
progression is a recurrence relation in which the first term a0 (or a1) and a common
difference d are given and the corresponding recurrence relation is

an = an−1 + d.

A geometric progression is a recurrence relation in which the first term a0 (or a1) and
common ratio r are given and the corresponding recurrence relation is

an = r · an−1.

Problem 9.8. Compute the first few terms of each of the following and find the solution.

(a) Arithmetic progression with a0 = 3 and d = 2.

(b) Geometric progression with a0 = 3 and r = 2.

Problem 9.9. Conjecture a solution to an arithmetic progression with first term a0 and
common difference d. Can you prove that your conjecture is correct?

Problem 9.10. Conjecture a solution to a geometric progression with first term a0 and
common ratio r. Can you prove that your conjecture is correct?

Problem 9.11. Recall that the triangular numbers are defined via tn := 1 + 2 + · · ·+ n.
The first few terms of this sequence are 1, 3, 6, 10, 15.

(a) Express the triangular numbers using a recurrence relation and initial condition.

(b) Is this sequence an arithmetic progression? Geometric progression?

(c) Notice that the sequence of triangular numbers is a sequence of partial sums of the
arithmetic sequence 1, 2, 3, . . .. What happens if we add the partial sum expression for
tn to a second copy of tn written in reverse? Can you recover the nice closed form for
tn we are already familiar with?

We can generalize the technique above for any sequence that is given by partial sums of
an arithmetic sequence.

Problem 9.12. For n ≥ 2, define an = 6 + 10 + 14 + · · · + (4n− 2) =
n∑

i=2

(4i− 2). Find a

closed form for an.
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What about sequences that are partial sums of geometric progressions? In this case, it
turns out that we can multiply by the common ratio, shift, and subtract.

Problem 9.13. For n ≥ 0, define an = 30 + 31 + · · · + 3n =
n∑

i=0

3i. Find a closed form for

an.

A linear constant-coefficient recurrence relation of order r has the form

an = c1an−1 + c2an−2 + · · ·+ cran−r + f(n),

where c1, c2, . . . , cr are real numbers with cr 6= 0. Such a recurrence relation is said to be
homogeneous if f(n) = 0, so that it can be written as

an = c1an−1 + c2an−2 + · · ·+ cran−r,

and is non-homogeneous otherwise.
Notice that every arithmetic progression and every geometric progression is a first order

linear constant-coefficient recurrence relation. In particular, each geometric progression is
homogeneous while each arithmetic progression is non-homogeneous.

Problem 9.14. Determine which of the following are linear constant-coefficient recurrence
relations. For those that are, which are homogeneous and which are non-homogeneous?

(a) an = nan−1

(b) an = an−1 + d

(c) an = can−1

(d) an = an−1 + an−2

(e) an =
∑n−1

i=0 aian−1−i

(f) an = an−1 − 4an−2 + 7an−3

(g) an = a2n−1 + 7an−2 + 2an−6

Problem 9.15. Solve the first-order linear constant-coefficient non-homogeneous recurrence
relation an = 3an−1 + 2 with initial condition a0 = 1.

Unfortunately, the technique of the previous example is difficult to generalize to higher
orders.

The next theorem characterizes the phenomenon that we witnessed in Problem 9.7. This
theorem can be proved by direct substitution and some algebraic manipulation.

Theorem 9.16 (Principle of Superposition). If s1(n), . . . , sk(n) are solutions to the linear
constant-coefficient homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ cran−r

and α1, . . . , αk are real numbers, then the linear combination α1s1(n) + · · ·+αksk(n) is also
a solution.
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We now focus on solving second-order linear constant-coefficient homogeneous recurrence
relations. Given the second-order linear constant-coefficient homogeneous recurrence relation

an = c1an−1 + c2an−2,

its corresponding characteristic equation is defined via

x2 − c1x− c2 = 0.

The solutions of the characteristic equation are called characteristic roots.

Example 9.17. The characteristic equation for the Fibonacci relation fn = fn−1 + fn−2 is

x2 − x − 1 = 0, which has characteristic roots x = 1±
√
5

2
. Note that the characteristic root

1+
√
5

2
≈ 1.618 is the well-known golden ratio.

We will utilize the following remarkable theorem without proving it.

Theorem 9.18. If r1 and r2 are two distinct characteristic roots (i.e., r1 6= r2) of the
characteristic equation for an = c1an−1 + c2an−2, then the solution to the recurrence relation
is

an = arn1 + brn2 ,

where a and b are constants determined by the initial conditions.

Problem 9.19. Solve an = an−1 + an−2 with initial conditions a0 = 0 and a1 = 1.

Problem 9.20. Use the previous problem to find a solution to the Fibonacci sequence given
by f1 = 1, f2 = 1, and fn = fn−1 + fn−2. The closed form we just obtained for fn is called
Binet’s formula.

Although we will not consider examples more complicated than these, this characteristic
root technique can be applied to much more complicated recurrence relations.

We now turn our attention to one of my favorite sequences, which is defined by a recur-
rence relation of a different flavor. The Catalan numbers are defined via c0 = 1 and

cn =
n−1∑
i=0

cicn−1−i

for n ≥ 1. The equation above is called the Catalan recurrence. Using the initial condition
and the Catalan recurrence, we can generate the first several terms of the Catalan sequence:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786

There are hundreds of interesting combinatorial objects counted by the Catalan numbers!
Let’s explore a few.
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Problem 9.21. A Dyck path of length 2n is a lattice path from (0, 0) to (n, n) that takes
n steps East from (i, j) to (i + 1, j) and n steps North from (i, j) to (i, j + 1) such that all
points on the path satisfy i ≤ j. This sound more complicated that it really is. You can
think of a Dyck path as one of our paths to get coffee that starts at (0, 0) and ends at (n, n)
but never drops below the line y = x. Let Dyck(n) denote set of all Dyck paths of length 2n
and let dn := |Dyck(n)|. We define d0 := 1 for convenience. Important: Unfortunately, we
also used dn to denote the number of derangements of n. This problem is about Dyck path,
not derangements.

(a) Compute d1, d2, d3, and d4 via brute force.

(b) Show that dn satisfies the following recurrence for n ≥ 1:

dn =
n−1∑
i=0

didn−1−i.

Hint: Consider the collection of Dyck paths that hit the line y = x at (i + 1, i + 1)
for the first time after leaving (0, 0). Think about how many ways you can draw the
Dyck path to get to (i+ 1, i+ 1) versus how many ways you can draw the Dyck path
from (i + 1, i + 1) to (n, n). The first case is trickier to think about. Notice that the
portion of the Dyck path from (0, 0) to (i + 1, i + 1) never hits the line y = x along
the way. Moreover, this portion necessarily starts with a North step and ends with an
East step. What are the possible values for i?

Since dn satisfies the same recurrence and initial conditions, it follows that dn = cn. That
is, the number of Dyck paths is a Catalan number.

Problem 9.22. A sequence of parentheses is balanced if it can be parsed syntactically. In
other words, there should be the same number of left parentheses “(” and right parentheses
“)”, and when reading from left to right there should never be more right parentheses than
left. Here are the five balanced parenthesizations containing three pairs:

()()(), ()(()), (()()), (())(), ((())).

Prove that the number of balanced sequences of n pairs of parentheses is cn. Hint: Use a
bijection!

Problem 9.23. A triangulation of a convex (n + 2)-gon is a dissection into n triangles
using only lines from vertices to vertices. Think of the polygon as being fixed in space.
Prove that the number of triangulations of a convex (n + 2)-gon is cn. Incidentally, this is
the problem that Euler was interested in when he studied the Catalan numbers!

Let’s see if we can find a closed form for the Catalan numbers!

Problem 9.24. Tackle each of the following.

(a) Argue that the number of lattice paths (not just Dyck paths) from (0, 0) to (n, n) is
equal to

(
2n
n

)
.
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(b) Argue that the number of lattice paths from (0, 0) to (n+ 1, n− 1) is equal to
(

2n
n−1

)
.

(c) Prove that there is a bijection from the set of lattice paths from (0, 0) to (n, n) that
pass below y = x at least once to the set of lattice paths from (0, 0) to (n+ 1, n− 1).
Hint: Consider the first point on lattice path from (0, 0) to (n, n) that passes below
y = x. Reflect the remaining portion of the path over the appropriate line to get a
path from (0, 0) to (n+ 1, n− 1).

(d) Prove that dn =

(
2n

n

)
−
(

2n

n− 1

)
.

It is easy to verify that

(
2n

n

)
−
(

2n

n− 1

)
=

1

n+ 1

(
2n

n

)
, and since dn = cn, we obtain

cn =
1

n+ 1

(
2n

n

)
.
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Chapter 10

Introduction to Graph Theory

Loosely speaking, a graph is a collection of points called vertices and connecting segments
called edges, each of which starts at a vertex, ends at a vertex and contains no other vertices
beside these. More formally, we define the term as follows. A graph consists of two sets,
a nonempty set V of points called vertices and a set E whose elements, called edges, are
multisets of size two from V .

Each edge is associated with either one vertex which serves as both endpoints or two

vertices as its endpoints. Technically, each edge is a multiset of the form {{u, v}} where

u, v ∈ V . We say that u and v are endpoints of the edge {{u, v}}. In an abuse of notation, it

is customary to write {u, v} even if u = v. In fact, we may abbreviate further and denote

the edge by uv . Note that the order in which the vertices of an edge are listed is irrelevant.
That is, {{u, v}} = {{v, u}}, {u, v} = {v, u}, and uv = vu. If G is the graph associated with

the vertex set V and edge set E, we write G = (V,E) . It is worth pointing out that we

assumed that V is nonempty, but E is allowed to be empty (i.e., the graph has no edges).
It is customary to represent a graph using visual representations, where each vertex is a

dot and each edge is a connecting segment, not necessarily straight.

Example 10.1. Here is an example of a graph with vertex set V = {v1, v2, v3, v4, v5}.

v1

v2

v3

v4 v5

Problem 10.2. Find at least five different graphs with vertex sets V = {a, b, c}.

There is a lot of terminology associated to graphs! Here are some of the relevant concepts.

• Vertices u and v of a graph are adjacent if they are the endpoints of the same edge.

• If v is an endpoint of the edge e, we say that e is incident to v.
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• If an edge e is incident to vertices u and v, we say that u and v are connected by
edge e.

• An edge e that is incident to a single vertex (i.e., e = uu for some u ∈ V ) is called a
loop.

• The order of a graph is the number of vertices in the graph. That is, if G = (V,E),
then the order of G is |V |.

• The degree of a vertex v, written deg(v), is the number of edges incident to v (i.e.,
the number of edges that have v as an endpoint). Note that a loop contributes 2 to a
vertex’s degree, one for each of the two ends of the edge. The degree of a vertex v is

denoted deg(v) .

Problem 10.3. Discuss each of the concepts introduced above in the context of Exam-
ple 10.1.

Many graphs have similar properties that allow us to categorize them. Here are several
families of graphs.

• Complete Graphs. The complete graph on n ≥ 1 vertices, denoted Kn , is the graph
of order n such that each pair of vertices is connected by exactly one edge, and there
are no other edges (i.e., no loops).

• Cycle Graphs. The cycle graph on n ≥ 3 vertices, denoted Cn , is the graph
such that when the n vertices are suitably labeled v1, v2, . . . , vn, the edges of Cn are
{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}.

• Path Graphs. The path on n ≥ 1 vertices, denoted Pn , has a description sim-
ilar to Cn: for distinct vertices suitably labeled v1, v2, . . . , vn, the edges of Pn are
{v1, v2}, {v2, v3}, . . . , {vn−1, vn}.

• Wheel Graphs. The wheel graph on n ≥ 4 vertices, denoted Wn , is the graph Cn−1
together with one additional vertex that is connected to each of the vertices of Cn−1.

• Hypercube Graphs. The hypercube of dimension n ≥ 1, denoted Qn , is the graph
whose vertices are labeled with the 2n bit strings of length n with an edge connecting
two vertices if and only if their labels differ in exactly one bit.

Problem 10.4. Draw the first few graphs of each of the graph families above.

Problem 10.5. How many edges do each of the following have?

(a) Kn

(b) Cn

(c) Pn
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(d) Wn

(e) Qn

A simple graph is a graph in which each edge connects two distinct vertices and each
pair of vertices is connected by at most one edge. Note that the graphs Kn, Cn, Pn,Wn, and
Qn are all simple graphs. A pseudograph (or multigraph) is like a graph but we allow
multiple edges between a pair of vertices (i.e., E is a multiset instead of a set).

Problem 10.6. Draw examples of simple graphs, non-simple graphs, and psuedographs on
3 vertices.

A simple graph G = (V,E) is bipartite if there is a partition of V into two nonempty
sets V1, V2 (i.e., V1 6= ∅, V2 6= ∅, V1 ∩ V2 = ∅, and V1 ∪ V2 = V ) such that each edge of G
connects a vertex in V1 and a vertex in V2. The pair (V1, V2) is called a bipartition of the
graph.

Problem 10.7. Provide an example of a bipartite graph with 5 vertices.

The following theorem provides a nice characterization of bipartite graphs.

Theorem 10.8. A graph is bipartite if each vertex can be colored with one of two colors so
that each pair of adjacent vertices have different colors.

Problem 10.9. Which complete graphs are bipartite?

Problem 10.10. Which path graphs are bipartite?

Problem 10.11. Which cycle graphs are bipartite?

Problem 10.12. Is Q3 bipartite?

A bipartite graph with bipartition (V1, V2) such that |V1| = m and |V2| = n is the
complete bipartite graph Km,n if it contains each edge {u, v} for every pair u ∈ V1 and
v ∈ V2. Note that Km,n = Kn,m.

Problem 10.13. Draw K1,1, K1,2, K2,2, K2,3, K3,3.

The next result is sometimes referred to as the Handshake Lemma. Do you see why?

Theorem 10.14 (Degree Sum Formula). In any graph, the sum of the degrees of vertices
in the graph is always twice the number of edges. In other words, in a graph G = (V,E),

2|E| =
∑
v∈V

deg(v).

Problem 10.15. At a recent party, 9 people greeted each other by shaking hands. Is it
possible that each person shook hands with exactly 7 people at the party?

Sometimes it is convenient to use the term even vertex or odd vertex to refer to a
vertex whose degree is even or odd, respectively.
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Problem 10.16. Explain why every graph has an even number of odd vertices.

The degree sequence of a graph is the list of the degrees of the vertices of the graph
in descending order. A finite list of nonnegative integers in descending order is graphic if
it is the degree sequence of a simple graph.

Problem 10.17. Find the degree sequences for Kn (n ≥ 1), Cn (n ≥ 3), Pn (n ≥ 1), Wn

(n ≥ 4), and Qn (n ≥ 1).

Problem 10.18. Which of the following are graphic sequences?

(a) 3332

(b) 3331

(c) 44332

Problem 10.19. Find two different graphs that have 32222111 as their degree sequence.

Theorem 10.20. If d1d2 · · · dn is the degree sequence for a graph G of order n, then
∑n

i=1 di
must be even.

One consequence of the previous theorem is that any sequence with an odd sum (e.g., 331)
is not graphic. It turns out that if a sequence has an even sum, it is the degree sequence of a
multigraph. The construction of such a graph is straightforward: connect vertices with odd
degrees in pairs, and fill out the remaining even degree counts by self-loops. The question
of whether a given degree sequence can be realized by a simple graph is more challenging.
This problem is also called graph realization problem and can be solved by either the
Erdös–Gallai theorem or the Havel–Hakimi algorithm. Unfortunately, this is beyond the
scope of this course.

We will now focus on making new graphs from old. Below are several definitions.

• A graph H = (VH , EH) is a subgraph of a graph G = (VG, EG) if VH ⊆ VG and
EH ⊆ EG (i.e., the vertices of H are vertices of G and the edges of H are edges of G).

If H is a subgraph of G, we may write H ⊆ G .

• A graph H = (VH , EH) is an induced subgraph of a graph G = (VG, EG) if VH ⊆ VG
and EH consists of all of the edges in EG that have both endpoints in EH . That is,
for any two vertices u, v ∈ VH , u and v are adjacent in H if and only if u and v are
adjacent in G.

• If G = (V,E) is a graph and S ⊆ V , then the subgraph of G induced by S, denoted

G[S] , is the induced subgraph of G with vertex set S.

• The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph with vertex set
V = V1 ∪ V2 and edge set E = E1 ∪ E2.

• The complement of a simple graph G of order n is the graph G on the same n
vertices such for each pair of distinct vertices u and v, {u, v} is an edge of G if and
only if it is not an edge of G.
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Problem 10.21. Consider the graph C4. Label the vertices clockwise as a, b, c, and d.

(a) Find all induced subgraphs of C4.

(b) Find a subgraph of C4 that is not an induced subgraph of C4.

Problem 10.22. Make up a few examples to explore the concepts of union and complement
of graphs.

Problem 10.23. Determine whether each of the following statements is true or false. If a
statement is true, prove it. Otherwise, provide a counterexample.

(a) Any subgraph of a complete graph is also complete.

(b) Any induced subgraph of a complete graph is also complete.

(c) Any subgraph of a bipartite graph is bipartite.

If G = (V,E) is a graph and S ⊆ V , the neighborhood of S, denoted N(S) is the

set of all vertices in V adjacent to at least one member of S. Of course, we can consider

the neighborhood of a single vertex v, which is denoted N(v) . A neighborhood of a single

vertex does not include itself, and is more specifically the open neighborhood of v. It
is also possible to define a neighborhood in which v itself is also included. This is called

the closed neighborhood of v, sometimes denoted by N [v] . Unless stated otherwise, a

neighborhood is assumed to be open.

Problem 10.24. Make up a few examples of graphs and explore the concept of neighbor-
hood.

Problem 10.25. Consider the graph K3,5 with bipartition V1 and V2, where |V1| = 3 and
|V2| = 5.

(a) For v ∈ V1, what is N(v)?

(b) What is N(V1)?

(c) What is N(V2)?

A matching (or independent edge set) in a graph G = (V,E) is a subset of edges
M ⊆ E without common vertices. That is, a subset of the edges is a matching if each vertex
appears as an endpoint in at most one edge of that matching. If M is a matching, a vertex
is said to be matched if it is an endpoint of one of the edges in M . Otherwise, the vertex is
called unmatched. We say that M covers a subset S ⊆ V if every vertex of S is matched
by M .

We now explore a type of matching problem. Suppose we have a bipartite graph G =
(V,E) with a bipartition (V1, V2). We want to match up each element v1 ∈ V1 with exactly
one element v2 ∈ V2 that is adjacent to it in G and that is not matched to any other element
of V1.
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A total matching from V1 to V2 is matching that covers V1. In other words, for each
v1 ∈ V1, there is a unique edge m ∈ M and a unique v2 ∈ V2 such that m is incident to v1
and v2. We can think of M as specifying an injective function from V1 to V2. If every vertex
in V2 is also matched (i.e., V2 is covered), then the matching is called a perfect matching.

Finding a matching in a bipartite graph can be treated as a network flow problem.

Problem 10.26. Consider the bipartite graph G given below. Is there a total matching
from {a1, a2, a3, a4} to {b1, b2, b3, b4, b5}? If so, find one. If not, explain why.

b1 b2 b3 b4 b5

a1 a2 a3 a4

Problem 10.27. Consider the bipartite graph G given below. Is there a total matching
from {a1, a2, a3, a4} to {b1, b2, b3, b4}? If so, find one. If not, explain why.

b1 b2 b3 b4

a1 a2 a3 a4

Problem 10.28. Determine whether each of the following statements is true or false. If a
statement is true, prove it. Otherwise, provide a counterexample.

(a) If a bipartite graph G = (V,E) has a perfect matching, then |V | is even.

(b) If G = (V,E) is a bipartite graph such that |V | is even, then G has a perfect matching.

In order for there to be a total matching from V1 to V2, we need deg(v1) > 0 for each
v1 ∈ V1. However, that is not enough. Phillip Hall (1904–1982) discovered the following
condition, known as Hall’s Marriage Theorem, needed for a total matching.

Theorem 10.29 (Hall’s Marriage Theorem). A bipartite graph with bipartition (V1, V2) has
a total matching from V1 to V2 if and only if |N(S)| ≥ |S| for all subsets S ⊆ V1. In other
words, every subset S of V1 must have sufficiently many neighbors in V2.

Hall actually stated and proved a more general theorem, but we have given its formulation
in the context of graph theory.

A graph G = (V,E) is called k-regular if deg(v) = k for every v ∈ V .

Example 10.30. The cycle graph Cn is 2-regular, the complete graph Kn is (n−1)-regular,
the hypercube graph Qn is n-regular, and the complete bipartite graph Kn,n is n-regular.

Problem 10.31. Prove that if G is a k-regular bipartite graph with bipartition (V1, V2),
then |V1| = |V2|.

Problem 10.32. Prove that if G is a k-regular bipartite graph with k > 1, then G has a
perfect matching.

47

https://en.wikipedia.org/wiki/Philip_Hall


Chapter 11

Additional Graph Theory

A digraph (or directed graph) D consists of a set V of vertices and a set E of directed
edges (or arrows), each of which is represented as an ordered pair (u, v), where u, v ∈ V .
We say that u is the initial vertex and v is the terminal vertex of the directed edge
(u, v). We write D = (V,E) as we did with undirected graphs. The indegree of a vertex v

in a digraph, denoted deg−(v) , is the number of directed edges that have v as a terminal

vertex while the outdegree of v, denoted deg+(v) , is the number of edges having v as an

initial vertex.

Problem 11.1. Find the indegree and outdegree of each vertex in the following graph.

b1

b2

b3

b4 b5

b10

b6

b7

b8 b9

As expected, we have the following result that is analogous to the Handshake Lemma
(Theorem 10.14).

Theorem 11.2. If D = (V,E) is a digraph, then

|E| =
∑
v∈V

deg−(v) =
∑
v∈V

deg+(v).

Each graph/digraph is determined by its vertices and the manner in which they are
connected by edges, not the way a graph/digraph might be sketched. We can represent a
graph in a couple of ways.

The adjacency list of a simple graph lists all vertices in one column and all adjacent
vertices in second column. For a digraph, the columns contain the initial vertices and the
associated terminal vertices.
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Problem 11.3. Make up a couple examples to explore adjacency lists for simple graphs and
digraphs.

An m×n matrix A is a rectangular array of numbers with m rows and n columns. The
entry in the ith row and jth column is indicated by Ai,j.

Example 11.4. The example below is a 2× 3 matrix:

A =

[
2 3 5

10 6 7

]
In this example, A1,2 = 3.

The adjacency matrix A of a graph (respectively, digraph) G with vertices listed as
v1, v2, . . . , vn is the n× n matrix A whose entry Ai,j in row i and column j is the number of
edges connecting vi and vj (respectively, the number of edges from vi to vj).

Problem 11.5. Find the adjacency matrix for the following graph.

v1

v2

v3

v4 v5

Problem 11.6. What properties will the adjacency matrix for a simple graph have?

Problem 11.7. Sketch a graph that has the following adjacency matrix.

A =


1 0 1 0 1
0 1 1 0 1
1 1 0 0 1
0 0 0 0 2
1 1 1 2 0


Problem 11.8. Sketch a digraph that has the following adjacency matrix.

A =


0 1 0 1 1
0 0 1 1 1
1 0 0 0 1
0 0 0 0 0
1 1 1 2 0


Problem 11.9. What will the adjacency matrix for Pn look like, assuming the vertices are
taken in the natural order (start at one end of the path and end at the other)? What about
Cn? Kn?
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Recall that a graph is not determined by a sketch since many sketches give the same
graph. It may be hard to recognize from sketches whether two graphs are “essentially” the
same even though the vertices may be different points. The notion of isomorphism (same
form) gives us a way to deal with this. Two simple graphs G1 = (V1, E1) and G2 = (V2, E2)
are the isomorphic, written G1

∼= G2, if there is a a bijection f : V1 → V2 such that {u, v}
is an edge in G1 if and only if {f(u), f(v)} is an edge in G2. The function f is called an
isomorphism. For digraphs, we require that (u, v) is a directed edge in G1 if and only if
(f(u), f(v)) is a directed edge in G2.

For G1 = (V1, E1) and G2 = (V2, E2), to show that G1
∼= G2:

1. State a vertex matching explicitly, and

2. Either

(a) Check adjacency for each pair of vertices in G1 and the corresponding pair in G2

(a total of
(|V1|

2

)
checks). This could also be as simple as providing sketches for

each graph that clearly exhibit the correspondence of vertices and edges.

(b) Demonstrate that the adjacency matrices of G1 and G2 are the same using an
ordering that is compatible with the vertex matching.

Warning! The second method above usually involves much less writing, but be aware that
the adjacency matrices may differ in one ordering but agree with a different ordering.

The simplest way to show that G1 6∼= G2 is to show that a feature preserved under
isomorphism (called an invariant) holds for one graph but not the other. Here are a few
isomorphic invariants:

(a) Order of the graph

(b) Number of edges in the graph

(c) Number of vertices of a given degree

(d) Degree sequence

(e) Vertices of degree k and ` are adjacent

(f) Subgraph that is isomorphic to Cn or Pn.

Problem 11.10. Determine whether the following graphs are isomorphic.

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

G H

Problem 11.11. Let G be the graph with vertex set V = {a, b, c, d, e} and edge set E =
{{a, b}, {a, c}, {a, e}, {b, d}, {b, e}, {c, d}} and let H be the following graph.

50



CHAPTER 11. ADDITIONAL GRAPH THEORY

b

a

e

d c

Determine whether G and H are isomorphic.

Problem 11.12. Determine which pairs of the following graphs are isomorphic.

f

c d

a

e

b

g h i j k l p q r s

t u

G H K

Problem 11.13. Determine whether the following digraphs are isomorphic.

a1

a2

a3

a4

a5

a6

a7

a8

b1

b2

b3

b4

b5

b6

b7

b8

G H

We now introduce several new terms.

• A walk in a graph is an alternating sequence of vertices and edges that starts with
a vertex and ends with a vertex such that consecutive vertices in the walk are the
endpoints of the edge that separates them. In a simple graph, a walk can be specified
by a sequence of vertices.

• The length of a walk is the number of edges in the walk.

• If the initial and terminal vertices of a walk are the same, then the walk is a closed
walk.

• A trail is a walk with distinct edges (no repeated edges).

• A circuit is a closed trail, that is, a closed walk with no repeated edges.

• A path is a walk with distinct vertices. This is a subgraph isomorphic to Pn for some
n.
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• A cycle is a closed walk with distinct vertices except the initial and terminal vertices.
This corresponds to a subgraph isomorphic to Cn for some n.

• A graph G is connected if for each pair of distinct vertices u and v, there is a walk
from u to v. A component of a graph is a connected subgraph that is not contained
in a larger connected subgraph.

• A cut vertex of a connected graph G is a vertex which when removed along with all
incident edges results in a disconnected graph.

• A bridge (or cut edge) is an edge of a connected graph which when removed results
in a disconnected graph.

The following theorem likely does not come as a surprise.

Theorem 11.14. A graph G is connected if and only if for each pair of distinct vertices u
and v, there is a path from u to v.

A digraph is strongly connected if for each pair of distinct vertices u and v there is a
(directed) walk from u to v. A digraph is weakly connected if the underlying undirected
graph in which the direction of edges is removed is connected. Note that a strongly connected
digraph will always be weakly connected. A strongly connected component of a digraph
is a maximal strongly connected subgraph.

We now introduce a couple of important circuits that a graph may or may not possess.
An Euler circuit in a graph G is a circuit that contains every edge of the graph. An Euler
trail in a graph is a trail that contains every edge of the graph. Note that an Euler circuit
is also an Euler trail as well.

Problem 11.15. Determine whether each of the following graphs has an Euler trail. How
about an Euler circuit?

a

b

c

d

b1

b2

b3

b4

b5

b6

v1

v2

v3

v4 v5

G H K

Theorem 11.16. If G is a connected graph of order n ≥ 2, then G has an Euler circuit if
and only if every vertex is even.

Corollary 11.17. If G is a connected graph of order n ≥ 2, then G has an Euler trail that
is not a circuit if and only if G has exactly two odd vertices.

Edges can be added to a connected graph in order to cause it to have an Euler circuit
(or trail). In particular, an Eulerization of a connected graph is the addition of suitable
multiple edges (i.e., duplicate existing edges) to permit an Euler circuit, mimicking what
must be done to complete a circuit such as a postal route or other delivery/pick-up route.
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Problem 11.18. Eulerize the following graph.

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

A cycle in a graph that passes through every vertex is a Hamilton cycle. This is often
called a Hamilton circuit. A Hamilton path is a path in a graph that includes every
vertex.

Problem 11.19. Determine whether each of the following graphs has a Hamilton circuit or
a Hamilton path that is not a circuit.

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a1 a2 a3 a4 a5

a6 a7 a9 a9 a10

a11 a12 a13 a14 a15

a16 a17 a18 a19 a20

a21 a22 a23 a24 a25

G H

Unfortunately, unlike the situation for Euler circuits, there is no known simple necessary
and sufficient condition for a Hamilton cycle to exist in a graph. We can state some simple
cases when one cannot exist, and there are some theorems for the existence of a Hamilton
cycle, but these do not cover all possibilities.

Theorem 11.20 (Dirac’s Theorem). If G is a simple graph of order n ≥ 3 in which deg(v) ≥
n/2 for each vertex, then G has a Hamilton cycle.

Theorem 11.21 (Ore’s Theorem). If G is a simple graph of order n ≥ 3 in which deg(u) +
deg(v) ≥ n for each pair of vertices u and v, then G has a Hamilton cycle.

Problem 11.22. How many distinct Hamilton cycles does Kn have that start/end at a fixed
vertex?

We now turn our attention to trees. A tree is a connected graph that has no cycles.
A forest is a graph in which every connected component is a tree. Trees provide a useful
structure for organizing data, for displaying organization, and for decision processes.

Problem 11.23. Is every tree necessarily a simple graph?

Theorem 11.24. A graph G is a tree if and only if for each pair of distinct vertices u and
v, there is a unique path from u to v.
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Theorem 11.25. Some properties of trees.

(a) A tree of order 2 or more has at least two vertices of degree 1.

(b) Every edge of a tree is a bridge.

(c) A connected graph in which every edge is a bridge is a tree.

(d) A tree of order n has n− 1 edges.

(e) A connected graph of order n with n− 1 edges is a tree.

A spanning tree of a simple graph G is a subgraph T of G such that T is a tree contains
every vertex of G.

Problem 11.26. Find a spanning tree for each of the following.

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a1 a2 a3 a4 a5

a6 a7 a9 a9 a10

a11 a12 a13 a14 a15

a16 a17 a18 a19 a20

a21 a22 a23 a24 a25

G H

Problem 11.27. Do you think every connected simple graph contains a spanning tree?

In fact, we have the following theorem.

Theorem 11.28. A simple graph G is connected if and only if it contains a spanning tree.

Below, we provide informal descriptions of the depth-first and breadth-first algorithms
for identifying a spanning tree in a connected simple graph G with vertices ordered as
v1, v2, . . . , vn.

Depth-First Search. Initialize: T = {v1}, v = v1. As long as T does not contain all
vertices, do the following:

• Choose the first vertex w in the ordered list that is adjacent to v and is not yet in T .
If there are no vertices adjacent to v that are not yet in T , return to the most recently
added previous vertex u and let v = u and repeat this step with the revised v.

• Add w and edge {v, w} to T .

• Set v = w.
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Repeat the steps above (with revised v’s) as often as needed.

Breadth-First Search. Initialize: T = {v1}, L = v1. As long as T does not contain all
vertices, do the following.

• Put v = the first vertex in L.

• Remove that vertex from L. (On paper, just mark out.)

• For all vertices adjacent to v not yet in T ,

– If w is the first vertex in order that is adjacent to v and not yet in T , add w and
edge {v, w} to T and put w at the end of list L.

– Repeat until all vertices adjacent to v not yet in T have been examined.

Repeat the above steps as needed.

A weighted graph is a graph with a positive numerical values assigned to each edge of
the graph. A minimal spanning tree of a connected weighted graph is a spanning tree
that has the smallest possible sum of weights for its edges.

Minimal spanning trees arose in the practical matter of designing an efficient electrical
network, and the concept applies to similar network notions in many areas such as transporta-
tion, utilities, and others. We will discuss one early, elementary, and effective algorithms for
finding a minimal spanning tree in a connected undirected weighted graph.

Prim’s Algorithm (Jarnik 1930, Prim 1957). Assume G is a connected, undirected,
weighted loopless graph of order n.

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.

2. Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in
the tree, find a minimum-weight edge, and transfer it to the tree.

3. Repeat step 2 (until all vertices are in the tree).

Prim’s Algorithm is an example of a greedy algorithm.

Problem 11.29. Make up an example of a connected, undirected, weighted loopless graph
and find a minimal spanning tree.
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