Power Rule

1.
$$f(x) = x - x^3$$

2. $f(x) = \frac{4}{x^2} - \frac{x^2}{4}$
3. $h(x) = \frac{3}{\sqrt{x}}$
4. $f(x) = x^2 - e^2$
5. $g(x) = \sqrt{\sqrt{x}}$
6. $f(x) = \frac{x^2 - 1}{x}$
7. $f(x) = \frac{7x + 3x^2}{5\sqrt{x}}$

Chain Rule

Find the first derivative of the following functions:

8. $f(x) = (x^2 - 1)^{10}$ 9. $f(x) = \sqrt{1 + \sqrt{1 + 2x}}$ 10. $g(x) = (3x^2 + 3x - 6)^{-8}$ 11. $f(x) = \sqrt[4]{9 - x}$

Product and Quotient Rule

Find the first derivative of the following functions:

12. $f(x) = (x+1)(x^2-3)$ (Try this one in two different ways.) 13. $g(x) = \frac{3x^2+5x}{\sqrt{x}}$ 14. $f(x) = x\sqrt{3x^2-x}$ 15. $f(x) = \frac{(5x^2-3)(x^2-2)}{x^2+2}$ 16. $g(x) = \frac{x}{x+\frac{17}{x}}$ 17. $h(x) = (\sqrt{x}-4)^3(\sqrt{x}+4)^5$

All Mixed Up: Power, Product, Quotient, Chain Rules

18. Find the first derivative of the following functions:

(a)
$$f(t) = 3t^2 + 2t$$

(b) $g(w) = \frac{w^3}{(w+3)^5}$
(c) $h(s) = (s^{-2})^3$
(d) $f(x) = 5\sqrt{x}$ at 4
(e) $g(x) = \sqrt[3]{5\sqrt{x}}$
(f) $f(x) = \pi^2$
(g) $m(t) = \sqrt{t^2 - 5t}$
(h) $g(y) = \sqrt{1 + \sqrt{1 + \sqrt{y}}}$
(i) $h(s) = (s+1)^5\sqrt{s-1}$
(j) $f(x) = \frac{2x-1}{\sqrt{x+1}}$
(k) $f(x) = \frac{(x+2)^2(3x-4x^5)^{100}}{(8-x)^7}$

Derivatives of Exponential Functions

19. Find the first derivative of the following functions:

(a)
$$f(t) = e^{3t}$$

(b) $g(z) = \left(\frac{2}{3}\right)^{3z-z^2}$
(c) $h(k) = 7e^{-5} - 7e^{-5k} + k^2 \ln(e^4)$
(d) $i(r) = 2^{4\sqrt{r}}$
(e) $A(t) = Pe^{rt}$ where P, r are constants

Derivatives of Logarithmic Functions

20. Find the first derivative of each function.

(a)
$$l(t) = \ln(x^2 - 1)$$

(b) $h(x) = \ln(x^x)$
(c) $t(y) = y \ln \frac{1}{y}$
(d) $j(x) = \ln \left(\frac{(4x - 1)^8 (3x^2 + 14)^7}{\sqrt{x^2 - 4}} \right)$
(e) $k(s) = \log_2((5s^8 - 11)^3)$

Derivatives of Trig / Inverse Trig / Inverse Functions

- 21. Find the first derivative of each function
 - (a) $a(s) = 2\sin^2(s) + 2\cos^2(s)$ Do this one two ways.
 - (b) $d(v) = \arccos(\cos(v))$ Do this one two ways.
 - (c) $b(t) = 4\ln(5\cos(t))$
 - (d) $c(u) = \cos(\sin(u))$
 - (e) $f(w) = \tan(w^2 + 1)$
 - (f) $g(v) = \arcsin(\cos(v)) + \cos(\arcsin(v))$ and simplify your result
 - (g) $h(y) = y^2 \arctan(4y)$
 - (h) $i(z) = \sec^7(2z)$

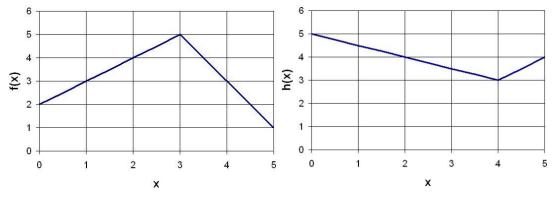
22. If f(2) = 4 and f'(2) = 7 determine the derivative of f^{-1} at 4.

23. If $f(x) = \frac{2x-1}{3x+4}$ determine $\frac{d}{dx}f^{-1}(x)$

- (a) using the result relating f' and $(f^{-1})'$ obtained in class.
- (b) by determining f^{-1} and then differentiating.

All Mixed Up: Derivatives of Exponentials, Logarithms, Trig, Misc. Functions

24. Find the first derivative of the following functions:


$$\begin{array}{ll}
\text{(a)} & f(t) = 3e^{4t} & \text{(g)} & f(x) = (\pi e)^2 \\
\text{(b)} & g(w) = \frac{e^3}{(3)^w} & \text{(h)} & m(t) = \tan(3t) \\
\text{(c)} & h(s) = e^{2s} \ln(2s) \text{ at } 1/2 & \text{(j)} & h(s) = s \sin s \\
\text{(d)} & f(x) = 5\sqrt{\log_3(x)} & \text{(k)} & f(x) = \frac{x}{\sin x} \\
\text{(e)} & g(x) = x^2 e^{x^2} & \text{(l)} & f(x) = \frac{(x+2)^2(e)^{100+x^3}}{\sin^7(x)}
\end{array}$$

Some "log trick" problems

25. Using the "log trick" show that d/dx a^x = a^x ln(a)
26. Use the "log trick" to show that (x^x)' = x^x(ln(x) + 1)
27. Use the "log trick" and the previous problem to determine d/dx x^{x^x}.

Miscillanious problems

- 28. If $g(d) = ab^2 + 3c^3d + 5b^2c^2d^2$, then what is g''(d)?
- 29. If $\frac{dy}{dx} = 5$ and $\frac{dx}{dt} = -2$ then what is $\frac{dy}{dt}$?
- 30. A ball is thrown into the air and its height h (in meters) after t seconds is given by the function $h(t) = 10 + 20t 5t^2$. When the ball reaches its maximum height, its velocity will be zero.
 - (a) At what time will the ball reach its maximum height?
 - (b) What is the maximum height of the ball?
- 31. Given the graphs of f(x) and h(x).

- (a) The function g = 10fh. What is g'(2)?
- (b) The function g = 10f(h). What is g'(2)?
- (c) The function $g = 10 \frac{f}{h}$. What is g'(2)?
- 32. What is the line tangent to $f(x) = x^3$ at 2?
- 33. Find the derivative in $f(x) = \frac{x}{\sqrt{x}}$ in three ways. i) using algebra and the power rule, ii) the product rule and iii) the quotient rule. Carry through algebra to show that these are all equal.
- 34. Let f(3) = 2, f'(3) = 4, g(3) = 1, g'(3) = 3 and f'(1) = 5.
 - (a) If h(x) = f(x)g(x), what is h'(3)?
 (b) If h(x) = f(x)/g(x), what is h'(3)?
 (c) If h(x) = f o g(x), what is h'(3)?
- 35. A function has a local minimum at x = -1 and x = 3 and a local max at x = 2. What is a possible function for f'(x)?
- 36. If $u = ve^w + xy^v$, then what is $\frac{du}{dv}$?
- 37. Use the product rule to show that the derivative of tan(x) is $sec^2(x)$.
- 38. For what value of x is $\frac{d}{dx}e^x$ equal to 1?
- 39. What is the line tangent to $f(x) = 2e^x$ at 1?

40. If $\ln(x) - y = 0$, find $\frac{dx}{dy}$.

41. Let $f(x) = e^{x^2} \cos(2x)\sqrt{3x+1}$, find f'(x).

42. Let $f(x) = \frac{x^3}{3} + x^2 - 3x$ for all $x \in \mathbf{R}$.

- (a) For what values (there are two of them) is f'(x) = 0.
- (b) List the intervals where f is increasing. Don't use a graph.
- (c) List the intervals where f is decreasing. Don't use a graph.
- (d) Where does f have a local maximum?
- (e) What is the local minimum value of f?