# Intuitive Definite Integral

1.



- (a) Find  $\int_0^4 g(x) dx$ .
- (b) Find  $\int_{-2}^{8} g(x) dx$ .

- 2. Use area of basic geometric shapes to find the following definite integrals.
  - (a) Find  $\int_{-2}^{8} |x-3| \ dx$ .
  - (b) Find  $\int_{-3}^{3} -\sqrt{9-x^2} \ dx$ .
  - (c) Find  $\int_0^2 \sqrt{1 \frac{x^2}{4}} \, dx$ .

### Riemann Sums

3. Estimate  $\int_0^8 g(x) dx$  using 4 intervals and:



- (a) left end points.
- (b) right end points.

- 4. Find the left and the right sum of  $f(x) = \sqrt{x} + 2$  on the interval [0,1] using 5 subdivisions.
- 5. The following sum:  $3(\sqrt{5}+1) + 3(\sqrt{8}+1) + 3(\sqrt{11}+1) + 3(\sqrt{14}+1)$  is a right Riemann sum for a certain definite integral  $\int_2^b f(x) dx$  using a partition of the interval [2, b] into 4 subintervals of equal length.
  - (a) What is b?
  - (b) What is f(x)?
- 6. The following sum:  $\frac{1}{1+\frac{2}{n}} \cdot \frac{2}{n} + \frac{1}{1+\frac{4}{n}} \cdot \frac{2}{n} + \frac{1}{1+\frac{6}{n}} \cdot \frac{2}{n} + \cdots + \frac{1}{1+\frac{2n}{n}} \cdot \frac{2}{n}$  is a right Riemann sum for a certain definite integral  $\int_{1}^{b} f(x) dx$  using a partition of the interval [1,b] into n subintervals of equal length.
  - (a) What is b?
  - (b) What is f(x)?

#### **Fundamental Theorem of Calculus**

- 7. Explain why the Fundamental Theorem of Calculus cannot be used to evaluate  $\int_{-1}^{1} \frac{1}{x^2} dx$ .
- 8. Compute each of the following definite integrals.

(a) Let 
$$A(x) = \int_0^x t^2 - t \, dt$$
. Find  $A'$ .

(b) Let 
$$f(x) = \int_0^x \sqrt[3]{t^2 + 1} \, dt$$
. Find  $f'$ .

(c) Let 
$$G(x) = \int_0^{x^2} t^3 \sin(t) dt$$
. Find  $G'$ .

(d) Let 
$$C(x) = \int_x^{x^3} \cos(\cos(t)) dt$$
. Find  $C'$ .

9. Let  $A(x) = \int_0^x \sin^2 t \ dt$ . Determine where A attains a maximum value on the interval  $[0, \pi]$ .

### **Definite Integrals**

10. Compute each of the following definite integrals.

(a) 
$$\int_{0}^{1} x^{2} dx$$

(b) 
$$\int_{-1}^{1} x^4 - \frac{1}{2}x^3 + \frac{1}{4}x - 2 \ dx$$

(c) 
$$\int_0^{\pi} \sin(x) \ dx$$

(d) 
$$\int_0^{\pi} \cos(2x) \ dx$$

(e) 
$$\int_0^{\ln 2} e^{x/3} dx$$

(f) 
$$\int_{1}^{e^2} \frac{x+1}{x^2} dx$$

(g) 
$$\int_{1}^{2} \frac{x^3 - 2\sqrt{x}}{x} dx$$

(h) 
$$\int_0^{1/2} \frac{4}{\sqrt{1-x^2}} dx$$

# **Indefinite Integrals**

11. Compute each of the following indefinite integrals.

(a) 
$$\int 5 dx$$

(a) 
$$\int 0 dx$$

(b) 
$$\int 2x^3 + x^2 - 5x + 5 \ dx$$

(c) 
$$\int -2\sqrt{x} \ dx$$

(d) 
$$\int \frac{x+1}{\sqrt{x}} dx$$

(e) 
$$\int \frac{1}{x^3} dx$$

(f) 
$$\int \frac{x+5}{x^2} dx$$

(g) 
$$\int \frac{\sin(x)}{\cos^2(x)} dx$$

### Substitution

12. Compute each of the following integrals.

(a) 
$$\int (3x-1)^2 dx$$
 (Do 2 ways.)

(b) 
$$\int (3x-1)^{99} dx$$

(c) 
$$\int 5x^2 \sqrt{x^3 - 2} \ dx$$

(d) 
$$\int_0^2 x e^{x^2} dx$$

(e) 
$$\int \sin^2(x) \cos(x) \ dx$$

$$(f) \int_0^1 \frac{x}{x^2 + 1} \, dx$$

(g) 
$$\int x^2 \sec^2(x^3) \ dx$$

(h) 
$$\int \frac{x}{x^4 + 1} \ dx$$

(i) 
$$\int x\sqrt{x-1} \ dx$$

#### Parts

- 13. Integrate each of the following.
  - (a)  $\int xe^{-x} dx$
  - (b)  $\int x^2 \sin(x) \ dx$
  - (c)  $\int \ln x \ dx$
  - (d)  $\int_0^1 \arctan(x) dx$
  - (e)  $\int x^3 e^{3x} dx$
  - (f)  $\int x^5 \sin(x^3) \ dx$
  - (g)  $\int e^x \cos(x) dx$ .

# Falling Objects

- 14. A skydiver steps out of an airplane. Her velocity in feet per second in the first 15 seconds of the fall can be represented by the function  $f(x) = 30(1 e^{-x/3})$ . Find the distance fallen by the skydiver after 15 seconds have passed.
- 15. During the 2014 Flagstaff earthquake, a pinecone fell from a tree on the edge of a cliff, falling 215 meters.
  - (a) How long did it take the piece of pinecone to hit the ground?
  - (b) Ignoring air resistance, what will the velocity of the pinecone when it strikes the ground?
- 16. An person falls from the tallest building in Flagstaff and takes 3 seconds to reach the ground.
  - (a) What is its speed at impact if air resistance is ignored?
  - (b) How tall is the building?
  - (c) What is the person's acceleration at the 2nd second?