
Chapter 2

Permutations and Combinations

A k-permutation of a set A is an injective function w : [k] → A. The set of all k-
permutations of A is denoted by SA,k . If A happens to be the set [n], we use the notation
Sn,k . And if n = k, we write Sn := Sn,n and refer to each n-permutation in Sn as a

permutation. Let P (n, k) := |Sn,k| . By convention, P (n, 0) = 1 .
We can denote a k-permutation as string w = w(1)w(2) · · ·w(k), where each entry w(i)

that appears in the string is unique (since w is an injection). In other words, we can think
of a k-permutation as a linear ordered arrangement of k of n objects.

Problem 2.1. Complete the following.

(a) Write down all of the elements in S3. What is P (3, 3)?

(b) Write down all of the elements in S4,3. What is P (4, 3)?

Recall that for n ∈ N, the factorial of n is defined n! := n · (n− 1) · · · 2 · 1 , and we
define 0! := 1 for convenience.

Problem 2.2. Consider the collection of k-permutations in Sn,k with 1 ≤ k ≤ n. Explain
why P (n, k) is equal to the number of nonattacking rook arrangements on an n × k chess
board. Hint: Establish a bijection between the collection of nonattacking rook arrangements
on an n× k chess board and the collection of k-permutations.

Theorem 2.3. For 1 ≤ k ≤ n, we have

P (n, k) = n · (n− 1) · · · (n+ 1− k) =
n!

(n− k)!
.

Note that as a special case of the formula above, we have |Sn| = P (n, n) = n!. For
convenience, we can extend the formula above to obtain

P (0, 0) =
0!

(0− 0)!
= 1 and P (n, 0) =

n!

(n− 0)!
= 1.
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Problem 2.4. How many strings of length three are there using letters from {a, b, c, d, e, f, g}
if the letters in the string are not repeated?

Problem 2.5. There are 8 finalists at the Olympic Games 100 meters sprint. Assume there
are no ties.

(a) How many ways are there for the runners to finish?

(b) How many ways are there for the runners to get gold, silver, bronze?

(c) How many ways are there for the runners to get gold, silver, bronze given that Usain
Bolt is sure to get the gold medal?

Problem 2.6. If 1 ≤ k ≤ n, prove that P (n, n) = P (n, k)P (n− k, n− k) , both using the
formula in Theorem 2.3, and separately using a combinatorial argument or by using the
definition of k-permutations together with the bijection principle.

Problem 2.7. If 1 ≤ k ≤ n, prove that P (n, k) = P (n− 1, k) + kP (n− 1, k − 1) , both
using the formula in Theorem 2.3, and separately using a combinatorial argument or by
using the definition of k-permutations together with the bijection principle.

Problem 2.8. How many ways can the letters of the word PRESCOTT be arranged?

Problem 2.9. How many ways can the letters of the word POPPY be arranged? Try to
solve this problem in two different ways.

Consider a set of n objects that are not necessarily distinct, with p different objects and
n objects of type i (for i = 1, 2, . . . p), so that n = n1 + · · ·+ np. An ordered arrangement of
these n objects is called a generalized permutation and the number of such arrangements
is denoted by P (n;n1, . . . , np) . For example, the number of words we can make out of the
letters of POPPY is P (5; 3, 1, 1).

Theorem 2.10. For n, n1, . . . , np ∈ N such that n = n1 + · · ·+ np, we have

P (n;n1, . . . , np) =
n!

n1! · · ·np!
.

Problem 2.11. How many ways can the letters of the word MISSISSIPPI be arranged?

Problem 2.12. In Professor X’s class of 9 graduate students she will give two A’s, one B,
and six C’s. How many possible ways are there to do this?

Problem 2.13. Let’s revisit Problem 1.14, which involved my walk to get coffee. When we
attacked that problem, we did a lot of brute force. Do we now have an easier method?

Problem 2.14. Six friends sit around a circle to play a game. Rotations of the group do
not constitute different seating orders.

(a) How many circular seating arrangements are there?
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(b) How many circular seating arrangements are there if Sally and Maria always sit next
to each other?

The above problem involves what are sometimes called circular permutations.

Problem 2.15. How many circular permutations are there involving n objects?

The notion of k-permutations captures arrangements of distinct objects where order
matters. But what should we do if we want to capture a situation where the order of the
objects does not matter? Since the order of the objects in a set does not matter, this is the
model we should use.

If A is a set and B ⊆ A with |B| = k, we refer to B as a k-subset of A. The collection
of all k-subsets of A is defined via

(
A

k

)
:= {B ⊆ A | |B| = k}.

The binomial coefficient is defined via
(
n

k

)
:= number of k-subsets of an n-element set.

We read
(
n
k

)
as “n choose k”. In particular, if |A| = n, then |

(
A
k

)
| =

(
n
k

)
. Alternate notations

for binomial coefficients include C(n, k) and nCk. We will see later why
(
n
k

)
is referred to as

a binomial coefficient.

Example 2.16. If A = {a, b, c, d}, then
(
A

2

)
= {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},

which implies that
(
4
2

)
= 6.

Problem 2.17. For any A, including the empty set, what is
(
A
0

)
? For n ≥ 0, what is

(
n
0

)

equal to?

Problem 2.18. For n ≥ 0, what is
(
n
n

)
equal to?

If we let n and k vary, we can organize the binomial coefficients in a triangular array,
often referred to as Pascal’s Triangle. See Table 2.1.

Problem 2.19. Suppose you have a pool of 6 applicants for a job opening. Let’s assume
you believe the values in Table 2.1.

(a) How many ways can you choose 3 of the 6 applicants to interview?

(b) How many ways can you hire 3 of the 6 applicants for 3 distinct jobs?
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n \ k 0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Table 2.1: Pascal’s Triangle of binomial coefficients.

Problem 2.20. What are the row sums in Pascal’s Triangle? That is, what is the following
sum equal to for any n ≥ 0?

n∑

k=0

(
n

k

)
:=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

Problem 2.21. Using the meaning of k-subset and k-permutation, explain why

P (n, k) =

(
n

k

)
· k!.

Using the previous problem, we immediately get the following handy formula for com-
puting binomial coefficients.

Theorem 2.22. For 0 ≤ k ≤ n, we have
(
n

k

)
=

n!

k!(n− k)!
.

Notice that the previous formula is equal to P (n,k)
k! . The numerator is counting how many

distinct arrangements (order matters) there are of k objects taken from n objects and the
denominator is essentially unordering arrangements that consist of the same objects.

Problem 2.23. A state senate consists of 19 Republicans and 14 Democrats. In how many
ways can a committee be chosen if:

(a) The committee contains 6 senators without regard to party?

(b) The committee contains 3 Republicans and 3 Democrats?

Problem 2.24. How many bit strings of length 10 have exactly three 1’s?

Problem 2.25. How many bit strings of length 6 have an odd number of 0’s?

Problem 2.26. As we noted earlier, we did quite a bit of brute force to determine how
many paths I could take to get coffee in Problem 1.14. Find a solution that utilizes binomial
coefficients.
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Problem 2.27. How many strings of 10 lower-case English letters have exactly two g’s and
exactly three v’s?
Problem 2.28. Assume 1 ≤ k ≤ n.

(a) Using the definition of
(
n
k

)
in terms of k-subsets (as opposed to the formula in Theo-

rem 2.22), explain why (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

This identity is often called Pascal’s Identity (or Pascal’s Recurrence).

(b) Connect the formula above with Problem 1.14 involving my walk to get coffee.
Problem 2.29. Assume 1 ≤ k ≤ n. It turns out that

(
n

k

)
=

(
n

n− k

)
.

(a) Prove the identity above using the formula for
(
n
k

)
given in Theorem 2.22.

(b) Explain why the identity is true by using the definition of
(
n
k

)
in terms of k-subsets.

The upshot is that each row of Pascal’s Triangle is a palindrome.

Problem 2.30. Explain why 1 + 2 + · · ·+ n =

(
n+ 1

2

)
.

By the way, the number defined by Tn := 1 + 2 + · · ·+ n is called the nth Triangular
number (due to the shape we get by representing each number in the sum by a stack of
balls).
Problem 2.31. Consider the linear equation x1+x2+x3 = 11. How many integer solutions
are there if:

(a) x1, x2, x3 ≥ 0?

(b) x1, x2, x3 > 0? Note: ChatGPT did not get correct answer for me!

(c) x1 ≥ 1, x2 ≥ 0, x3 ≥ 2?
Problem 2.32. How many ways can you distribute 5 identical lollipops to 6 kids?

These last two problems illustrate a technique known as stars and bars. In general, n
stars tally the number of objects and r − 1 bars separate them into r distinct categories.
Theorem 2.33. The number of possible collections of n objects of r different types is

(
n+ r − 1

r − 1

)
=

(
n+ r − 1

n

)
.

Problem 2.34. Zittles come in 5 colors: green, yellow, red, orange, and purple. How many
different collections of 32 Zittles are possible?
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