
Chapter 6

Sequences and Recurrence Relations

In this chapter we will study sequences of numbers that are built recursively. Technically, a
sequence (of real numbers) is a function a from N to R. If n ∈ N, it is common to write
an := a(n). We refer to an as the nth term of the sequence. We will abuse notation and
associate a sequence with its list of outputs, namely:

(an)
∞
n=1 := (a1, a2, . . .) ,

which we may abbreviate as (an) . Sometimes we may start our sequences at n = 0 as
opposed to n = 1. That is, we may allow the domain of a sequence to be N ∪ {0}.

Example 6.1. Define a : N → R via an = 1
2n . Then we have

a =

(
1

2
,
1

4
, . . .

)
=

(
1

2n

)∞

n=1

.

It is important to point out that not every sequence has a description in terms of an
algebraic formula. For example, we could form a sequence out of the digits to the right of
the decimal in the decimal expansion of π, namely the nth term of the sequence is the nth
digit to the right of the decimal. But then there is no nice algebraic formula for describing
the nth term of this sequence.

Loosely speaking, a sequence of numbers is defined recursively if the nth term of the
sequence is defined in terms of “earlier” terms of the sequence. We have already encountered
one famous example of a sequence being defined recursively, namely the Fibonacci sequence
(fn), which we defined by f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. The equation
fn = fn−1 + fn−2 is the recurrence relation while f1 = 1 and f2 = 1 are the initial
conditions. It is important to emphasize that we cannot define the Fibonacci number
using only the recurrence relation since otherwise, we would not be able to “get started”
with the recurrence.

We have also encountered a few recurrence relations of a different flavor that arise out of
two-dimensional arrays of numbers. For example:

(a) Number of k-permutations of [n]: For 1 ≤ k ≤ n,

P (n, k) = P (n− 1, k) + kP (n− 1, k − 1).
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(b) Number of k-subsets of [n]: For 1 ≤ k ≤ n,
(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

(c) Number of set partitions of [n] with k blocks: For 1 ≤ k ≤ n,
{
n
k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1
k

}
.

Notice that each of the descriptions above are not sufficient without also providing a way to
“get started”. For the two-dimensional case, the initial conditions are often called boundary
conditions. For the rest of this chapter, we will focus on one-dimensional sequences.

Here is an important general principle.

Theorem 6.2. If two sequences satisfy the same recurrence relation and initial conditions,
then the two sequences must be equal.

Problem 6.3. Recall that a composition of n with k parts is an ordered list of k positive
integers whose sum is n, denoted α = (α1, . . . ,αk). We say that αi is the ith part.

(a) How many compositions of n have only odd parts?

(b) How many compositions of n have parts of size 1 and 2 only?

Problem 6.4. Prove that fn+1 =
∑

k≥0

(
n− k

k

)
by utilizing one of the parts from Prob-

lem 6.3. What does this identity tell us about Pascal’s Triangle?

Problem 6.5. For each of the following recursively defined sequences, generate the first few
terms. If possible, find an explicit formula for the terms of the sequence.

(a) a1 = 2, an = an−1 + 7 for n ≥ 2.

(b) a0 = 1, an = 2an−1 for n ≥ 1.

(c) a0 = 0, an = nan−1 for n ≥ 1.

(d) a0 = 0, an = an−1 + n for n ≥ 1.

(e) a0 = 0, an = an−1 +
n∑

i=0

(i+ n) for n ≥ 1.

By solving a recurrence relation together with its initial conditions we mean finding an
explicit expression (sometimes called a closed form) for an arbitrary term an as a function
of n (but no earlier terms of the sequence). The explicit expression for an is called the
solution of the recurrence relation. For example, each time we found an explicit formula for
the nth term of a sequence in the previous problem, we were solving the recurrence relation
and the corresponding expression we found is the solution. By the general solution of a
recurrence relation, we mean the set of its solutions given any initial conditions.
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Problem 6.6. Find the general solution for an = 2an−1 if the first term of the sequence is
a0. What if the sequence starts at a1?

It’s important to point out that finding a solution to a recurrence relation can be quite
complicated, maybe even impossible! However, verifying whether a proposed solution is
correct or not is straightforward.

Problem 6.7. Consider the recurrence relation an = an−1+6an−2. Is an = (−2)n a solution?
How about an = 3n? How about 5(−2)n + 7 · 3n?

We now turn our attention to two special classes of recurrence relations. An arithmetic
progression is a recurrence relation in which the first term a0 (or a1) and a common
difference d are given and the corresponding recurrence relation is

an = an−1 + d.

A geometric progression is a recurrence relation in which the first term a0 (or a1) and
common ratio r are given and the corresponding recurrence relation is

an = r · an−1.

Problem 6.8. Compute the first few terms of each of the following and find the solution.

(a) Arithmetic progression with a0 = 3 and d = 2.

(b) Geometric progression with a0 = 3 and r = 2.

Problem 6.9. Conjecture a solution to an arithmetic progression with first term a0 and
common difference d. Can you prove that your conjecture is correct?

Problem 6.10. Conjecture a solution to a geometric progression with first term a0 and
common ratio r. Can you prove that your conjecture is correct?

Problem 6.11. Recall that the triangular numbers are defined via tn := 1 + 2+ · · ·+ n.
The first few terms of this sequence are 1, 3, 6, 10, 15.

(a) Express the triangular numbers using a recurrence relation and initial condition.

(b) Is this sequence an arithmetic progression? Geometric progression?

(c) Notice that the sequence of triangular numbers is a sequence of partial sums of the
arithmetic sequence 1, 2, 3, . . .. What happens if we add the partial sum expression for
tn to a second copy of tn written in reverse? Can you recover the nice closed form for
tn we are already familiar with?

We can generalize the technique above for any sequence that is given by partial sums of
an arithmetic sequence.

Problem 6.12. Define an = 6+ 10 + 14 + · · ·+ (4n− 2) =
n∑

i=2

(4i− 2). Find a closed form

for an.
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What about sequences that are partial sums of geometric progressions? In this case, it
turns out that we can multiply by the common ratio, shift, and subtract.

Problem 6.13. Define an = 30 + 31 + · · ·+ 3n =
n∑

i=0

3i. Find a closed form for an.

A linear constant-coefficient recurrence relation of order r has the form

an = c1an−1 + c2an−2 + · · ·+ cran−r + f(n),

where c1, c2, . . . , cr are real numbers with cr '= 0. Such a recurrence relation is said to be
homogeneous if f(n) = 0, so that it can be written as

an = c1an−1 + c2an−2 + · · ·+ cran−r,

and is non-homogeneous otherwise.
Notice that every arithmetic progression and every geometric progression is a first order

linear constant-coefficient recurrence relation. In particular, each geometric progression is
homogeneous while each arithmetic progression is non-homogeneous.

Problem 6.14. Determine which of the following are linear constant-coefficient recurrence
relations. For those that are, which are homogeneous and which are non-homogeneous?

(a) an = nan−1

(b) an = an−1 + d

(c) an = can−1

(d) an = an−1 + an−2

(e) an =
∑n−1

i=0 aian−1−i

(f) an = an−1 − 4an−2 + 7an−3

(g) an = a2n−1 + 7an−2 + 2an−6

Problem 6.15. Solve the first-order linear constant-coefficient non-homogeneous recurrence
relation an = 3an−1 + 2 with initial condition a0 = 1.

Unfortunately, the technique of the previous example is difficult to generalize to higher
orders.

The next theorem characterizes the phenomenon that we witnessed in Problem 6.7. This
theorem can be proved by direct substitution and some algebraic manipulation.

Theorem 6.16 (Principle of Superposition). If s1(n), . . . , sk(n) are solutions to the linear
constant-coefficient homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ cran−r

and α1, . . . ,αk are real numbers, then the linear combination α1s1(n) + · · ·+αksk(n) is also
a solution.
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We now focus on solving second-order linear constant-coefficient homogeneous recurrence
relations. Given the second-order linear constant-coefficient homogeneous recurrence relation

an = c1an−1 + c2an−2,

its corresponding characteristic equation is defined via

x2 − c1x− c2 = 0.

The solutions of the characteristic equation are called characteristic roots.

Example 6.17. The characteristic equation for the Fibonacci relation fn = fn−1 + fn−2 is
x2 − x − 1 = 0, which has characteristic roots x = 1±

√
5

2 . Note that the characteristic root
1+

√
5

2 ≈ 1.618 is the well-known golden ratio.

We will utilize the following remarkable theorem without proving it.

Theorem 6.18. If r1 and r2 are two distinct characteristic roots (i.e., r1 '= r2) of the
characteristic equation for an = c1an−1+ c2an−2, then the solution to the recurrence relation
is

an = arn1 + brn2 ,

where a and b are constants determined by the initial conditions.

Problem 6.19. Solve an = an−1 + an−2 with initial conditions a0 = 0 and a1 = 1.

Problem 6.20. Use the previous problem to find a solution to the Fibonacci sequence given
by f1 = 1, f2 = 1, and fn = fn−1 + fn−2. The closed form we just obtained for fn is called
Binet’s formula.

Although we will not consider examples more complicated than these, this characteristic
root technique can be applied to much more complicated recurrence relations.

We now turn our attention to one of my favorite sequences, which is defined by a recur-
rence relation of a different flavor. The Catalan numbers are defined via c0 = 1 and

cn =
n−1∑

i=0

cicn−1−i

for n ≥ 1. The equation above is called the Catalan recurrence. Using the initial condition
and the Catalan recurrence, we can generate the first several terms of the Catalan sequence:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786

There are hundreds of interesting combinatorial objects counted by the Catalan numbers!
Let’s explore a few.
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Problem 6.21. A Dyck path of length 2n is a lattice path from (0, 0) to (n, n) that takes
n steps East from (i, j) to (i + 1, j) and n steps North from (i, j) to (i, j + 1) such that all
points on the path satisfy i ≤ j. This sound more complicated that it really is. You can
think of a Dyck path as one of our paths to get coffee that starts at (0, 0) and ends at (n, n)
but never drops below the line y = x. Let Dyck(n) denote set of all Dyck paths of length 2n
and let dn := |Dyck(n)|. We define d0 := 1 for convenience. Important: Unfortunately, we
also used dn to denote the number of derangements of n. This problem is about Dyck path,
not derangements.

(a) Compute d1, d2, d3, and d4 via brute force.

(b) Show that dn satisfies the following recurrence for n ≥ 1:

dn =
n−1∑

i=0

didn−1−i.

Hint: Consider the collection of Dyck paths that hit the line y = x at (i + 1, i + 1)
for the first time after leaving (0, 0). Think about how many ways you can draw the
Dyck path to get to (i+ 1, i+ 1) versus how many ways you can draw the Dyck path
from (i + 1, i + 1) to (n, n). The first case is trickier to think about. Notice that the
portion of the Dyck path from (0, 0) to (i + 1, i + 1) never hits the line y = x along
the way. Moreover, this portion necessarily starts with a North step and ends with an
East step. What are the possible values for i?

Since dn satisfies the same recurrence and initial conditions, it follows that dn = cn. That
is, the number of Dyck paths is a Catalan number.

Problem 6.22. A sequence of parentheses is balanced if it can be parsed syntactically. In
other words, there should be the same number of left parentheses “(” and right parentheses
“)”, and when reading from left to right there should never be more right parentheses than
left. Here are the five balanced parenthesizations containing three pairs:

()()(), ()(()), (()()), (())(), ((())).

Prove that the number of balanced sequences of n pairs of parentheses is cn. Hint: Use a
bijection!

Problem 6.23. A triangulation of a convex (n + 2)-gon is a dissection into n triangles
using only lines from vertices to vertices. Think of the polygon as being fixed in space.
Prove that the number of triangulations of a convex (n + 2)-gon is cn. Incidentally, this is
the problem that Euler was interested in when he studied the Catalan numbers!

Let’s see if we can find a closed form for the Catalan numbers!

Problem 6.24. Tackle each of the following.

(a) Argue that the number of lattice paths (not just Dyck paths) from (0, 0) to (n, n) is
equal to

(
2n
n

)
.
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(b) Argue that the number of lattice paths from (0, 0) to (n+ 1, n− 1) is equal to
(

2n
n−1

)
.

(c) Prove that there is a bijection from the set of lattice paths from (0, 0) to (n, n) that
pass below y = x at least once to the set of lattice paths from (0, 0) to (n+ 1, n− 1).
Hint: Consider the first point on lattice path from (0, 0) to (n, n) that passes below
y = x. Reflect the remaining portion of the path over the appropriate line to get a
path from (0, 0) to (n+ 1, n− 1).

(d) Prove that dn =

(
2n

n

)
−

(
2n

n− 1

)
.

It is easy to verify that
(
2n

n

)
−

(
2n

n− 1

)
=

1

n+ 1

(
2n

n

)
, and since dn = cn, we obtain

cn =
1

n+ 1

(
2n

n

)
.
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