
Chapter 11

Additional Graph Theory

A digraph (or directed graph) D consists of a set V of vertices and a set E of directed
edges (or arrows), each of which is represented as an ordered pair (u, v), where u, v 2 V .
We say that u is the initial vertex and v is the terminal vertex of the directed edge
(u, v). We write D = (V,E) as we did with undirected graphs. The indegree of a vertex v

in a digraph, denoted deg�(v) , is the number of directed edges that have v as a terminal

vertex while the outdegree of v, denoted deg+(v) , is the number of edges having v as an
initial vertex.

Problem 11.1. Find the indegree and outdegree of each vertex in the following graph.
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As expected, we have the following result that is analogous to the Handshake Lemma
(Theorem 10.14).

Theorem 11.2. If D = (V,E) is a digraph, then

|E| =
X

v2V

deg�(v) =
X

v2V

deg+(v).

Each graph/digraph is determined by its vertices and the manner in which they are
connected by edges, not the way a graph/digraph might be sketched. We can represent a
graph in a couple of ways.

The adjacency list of a simple graph lists all vertices in one column and all adjacent
vertices in second column. For a digraph, the columns contain the initial vertices and the
associated terminal vertices.
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Problem 11.3. Make up a couple examples to explore adjacency lists for simple graphs and
digraphs.

An m⇥n matrix A is a rectangular array of numbers with m rows and n columns. The
entry in the ith row and jth column is indicated by Ai,j.

Example 11.4. The example below is a 2⇥ 3 matrix:

A =


2 3 5
10 6 7

�

In this example, A1,2 = 3.

The adjacency matrix A of a graph (respectively, digraph) G with vertices listed as
v1, v2, . . . , vn is the n⇥ n matrix A whose entry Ai,j in row i and column j is the number of
edges connecting vi and vj (respectively, the number of edges from vi to vj).

Problem 11.5. Find the adjacency matrix for the following graph.

v1

v2

v3
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Problem 11.6. What properties will the adjacency matrix for a simple graph have?

Problem 11.7. Sketch a graph that has the following adjacency matrix.

A =

2

66664

1 0 1 0 1
0 1 1 0 1
1 1 0 0 1
0 0 0 0 2
1 1 1 2 0

3

77775

Problem 11.8. Sketch a digraph that has the following adjacency matrix.

A =

2

66664

0 1 0 1 1
0 0 1 1 1
1 0 0 0 1
0 0 0 0 0
1 1 1 2 0

3

77775

Problem 11.9. What will the adjacency matrix for Pn look like, assuming the vertices are
taken in the natural order (start at one end of the path and end at the other)? What about
Cn? Kn?
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CHAPTER 11. ADDITIONAL GRAPH THEORY

Recall that a graph is not determined by a sketch since many sketches give the same
graph. It may be hard to recognize from sketches whether two graphs are “essentially” the
same even though the vertices may be di↵erent points. The notion of isomorphism (same
form) gives us a way to deal with this. Two simple graphs G1 = (V1, E1) and G2 = (V2, E2)
are the isomorphic, written G1

⇠= G2, if there is a a bijection f : V1 ! V2 such that {u, v}
is an edge in G1 if and only if {f(u), f(v)} is an edge in G2. The function f is called an
isomorphism. For digraphs, we require that (u, v) is a directed edge in G1 if and only if
(f(u), f(v)) is a directed edge in G2.

For G1 = (V1, E1) and G2 = (V2, E2), to show that G1
⇠= G2:

1. State a vertex matching explicitly, and

2. Either

(a) Check adjacency for each pair of vertices in G1 and the corresponding pair in G2

(a total of
�|V1|

2

�
checks). This could also be as simple as providing sketches for

each graph that clearly exhibit the correspondence of vertices and edges.

(b) Demonstrate that the adjacency matrices of G1 and G2 are the same using an
ordering that is compatible with the vertex matching.

Warning! The second method above usually involves much less writing, but be aware that
the adjacency matrices may di↵er in one ordering but agree with a di↵erent ordering.

The simplest way to show that G1 6⇠= G2 is to show that a feature preserved under
isomorphism (called an invariant) holds for one graph but not the other. Here are a few
isomorphic invariants:

(a) Order of the graph

(b) Number of edges in the graph

(c) Number of vertices of a given degree

(d) Degree sequence

(e) Vertices of degree k and ` are adjacent

(f) Subgraph that is isomorphic to Cn or Pn.

Problem 11.10. Determine whether the following graphs are isomorphic.
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Problem 11.11. Let G be the graph with vertex set V = {a, b, c, d, e} and edge set E =
{{a, b}, {a, c}, {a, e}, {b, d}, {b, e}, {c, d}} and let H be the following graph.
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b

a

e

d c

Determine whether G and H are isomorphic.

Problem 11.12. Determine which pairs of the following graphs are isomorphic.
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G H K

Problem 11.13. Determine whether the following digraphs are isomorphic.
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G H

We now introduce several new terms.

• A walk in a graph is an alternating sequence of vertices and edges that starts with
a vertex and ends with a vertex such that consecutive vertices in the walk are the
endpoints of the edge that separates them. In a simple graph, a walk can be specified
by a sequence of vertices.

• The length of a walk is the number of edges in the walk.

• If the initial and terminal vertices of a walk are the same, then the walk is a closed

walk.

• A trail is a walk with distinct edges (no repeated edges).

• A circuit is a closed trail, that is, a closed walk with no repeated edges.

• A path is a walk with distinct vertices. This is a subgraph isomorphic to Pn for some
n.
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• A cycle is a closed walk with distinct vertices except the initial and terminal vertices.
This corresponds to a subgraph isomorphic to Cn for some n.

• A graph G is connected if for each pair of distinct vertices u and v, there is a walk
from u to v. A component of a graph is a connected subgraph that is not contained
in a larger connected subgraph.

• A cut vertex of a connected graph G is a vertex which when removed along with all
incident edges results in a disconnected graph.

• A bridge (or cut edge) is an edge of a connected graph which when removed results
in a disconnected graph.

The following theorem likely does not come as a surprise.

Theorem 11.14. A graph G is connected if and only if for each pair of distinct vertices u
and v, there is a path from u to v.

A digraph is strongly connected if for each pair of distinct vertices u and v there is a
(directed) walk from u to v. A digraph is weakly connected if the underlying undirected
graph in which the direction of edges is removed is connected. Note that a strongly connected
digraph will always be weakly connected. A strongly connected component of a digraph
is a maximal strongly connected subgraph.

We now introduce a couple of important circuits that a graph may or may not possess.
An Euler circuit in a graph G is a circuit that contains every edge of the graph. An Euler

trail in a graph is a trail that contains every edge of the graph. Note that an Euler circuit
is also an Euler trail as well.

Problem 11.15. Determine whether each of the following graphs has an Euler trail. How
about an Euler circuit?
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Theorem 11.16. If G is a connected graph of order n � 2, then G has an Euler circuit if
and only if every vertex is even.

Corollary 11.17. If G is a connected graph of order n � 2, then G has an Euler trail that
is not a circuit if and only if G has exactly two odd vertices.

Edges can be added to a connected graph in order to cause it to have an Euler circuit
(or trail). In particular, an Eulerization of a connected graph is the addition of suitable
multiple edges (i.e., duplicate existing edges) to permit an Euler circuit, mimicking what
must be done to complete a circuit such as a postal route or other delivery/pick-up route.
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Problem 11.18. Eulerize the following graph.
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A cycle in a graph that passes through every vertex is a Hamilton cycle. This is often
called a Hamilton circuit. A Hamilton path is a path in a graph that includes every
vertex.

Problem 11.19. Determine whether each of the following graphs has a Hamilton circuit or
a Hamilton path that is not a circuit.
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Unfortunately, unlike the situation for Euler circuits, there is no known simple necessary
and su�cient condition for a Hamilton cycle to exist in a graph. We can state some simple
cases when one cannot exist, and there are some theorems for the existence of a Hamilton
cycle, but these do not cover all possibilities.

Theorem 11.20 (Dirac’s Theorem). If G is a simple graph of order n � 3 in which deg(v) �
n/2 for each vertex, then G has a Hamilton cycle.

Theorem 11.21 (Ore’s Theorem). If G is a simple graph of order n � 3 in which deg(u) +
deg(v) � n for each pair of vertices u and v, then G has a Hamilton cycle.

Problem 11.22. How many distinct Hamilton cycles does Kn have that start/end at a fixed
vertex?

We now turn our attention to trees. A tree is a connected graph that has no cycles.
A forest is a graph in which every connected component is a tree. Trees provide a useful
structure for organizing data, for displaying organization, and for decision processes.

Problem 11.23. Is every tree necessarily a simple graph?

Theorem 11.24. A graph G is a tree if and only if for each pair of distinct vertices u and
v, there is a unique path from u to v.
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Theorem 11.25. Some properties of trees.

(a) A tree of order 2 or more has at least two vertices of degree 1.

(b) Every edge of a tree is a bridge.

(c) A connected graph in which every edge is a bridge is a tree.

(d) A tree of order n has n� 1 edges.

(e) A connected graph of order n with n� 1 edges is a tree.

A spanning tree of a simple graph G is a subgraph T of G such that T is a tree contains
every vertex of G.

Problem 11.26. Find a spanning tree for each of the following.
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Problem 11.27. Do you think every connected simple graph contains a spanning tree?

In fact, we have the following theorem.

Theorem 11.28. A simple graph G is connected if and only if it contains a spanning tree.

Below, we provide informal descriptions of the depth-first and breadth-first algorithms
for identifying a spanning tree in a connected simple graph G with vertices ordered as
v1, v2, . . . , vn.

Depth-First Search. Initialize: T = {v1}, v = v1. As long as T does not contain all
vertices, do the following:

• Choose the first vertex w in the ordered list that is adjacent to v and is not yet in T .
If there are no vertices adjacent to v that are not yet in T , return to the most recently
added previous vertex u and let v = u and repeat this step with the revised v.

• Add w and edge {v, w} to T .

• Set v = w.
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Repeat the steps above (with revised v’s) as often as needed.

Breadth-First Search. Initialize: T = {v1}, L = v1. As long as T does not contain all
vertices, do the following.

• Put v = the first vertex in L.

• Remove that vertex from L. (On paper, just mark out.)

• For all vertices adjacent to v not yet in T ,

– If w is the first vertex in order that is adjacent to v and not yet in T , add w and
edge {v, w} to T and put w at the end of list L.

– Repeat until all vertices adjacent to v not yet in T have been examined.

Repeat the above steps as needed.

A weighted graph is a graph with a positive numerical values assigned to each edge of
the graph. A minimal spanning tree of a connected weighted graph is a spanning tree
that has the smallest possible sum of weights for its edges.

Minimal spanning trees arose in the practical matter of designing an e�cient electrical
network, and the concept applies to similar network notions in many areas such as transporta-
tion, utilities, and others. We will discuss one early, elementary, and e↵ective algorithms for
finding a minimal spanning tree in a connected undirected weighted graph.

Prim’s Algorithm (Jarnik 1930, Prim 1957). Assume G is a connected, undirected,
weighted loopless graph of order n.

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.

2. Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in
the tree, find a minimum-weight edge, and transfer it to the tree.

3. Repeat step 2 (until all vertices are in the tree).

Prim’s Algorithm is an example of a greedy algorithm.

Problem 11.29. Make up an example of a connected, undirected, weighted loopless graph
and find a minimal spanning tree.
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