Chapter 4

Combinations

The notion of *k*-permutations captures arrangements of distinct objects where order matters. But what should we do if we want to capture a situation where the order of the objects does not matter? Since the order of the objects in a set does not matter, this is the model we should use.

If *A* is a set and $B \subseteq A$ with $|B| = k$, we refer to *B* as a *k*-subset of *A*. The collection of all *k*-subsets of *A* is defined via

$$
\left\lceil \binom{A}{k} \right\rceil := \{ B \subseteq A \mid |B| = k \}.
$$

The **binomial coefficient** is defined via

$$
\binom{n}{k} :=
$$
 number of *k*-subsets of an *n*-element set.

In particular, if $|A| = n$, then $|{A \choose k}| = {n \choose k}$. We read " ${n \choose k}$ " as "*n* choose *k*". Alternate notations for binomial coefficients include $C(n, k)$ and $n\widetilde{C}_k$. We will see later why $\binom{n}{k}$ is referred to as a binomial coefficient.

Example 4.1. If $A = \{a, b, c, d\}$, then

$$
\binom{A}{2} = \{\{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}\},
$$

which implies that $\binom{4}{2} = 6$.

Problem 4.2. For any *A*, including the empty set, what is $\binom{A}{0}$? For $n \geq 0$, what is $\binom{n}{0}$ equal to?

Problem 4.3. For $n \geq 0$, what is $\binom{n}{n}$ equal to?

If we let n and k vary, we can organize the binomial coefficients in a triangular array, often referred to as Pascal's Triangle. See Table [4.1.](#page-1-0)

$n \setminus k$ 0 1 2				-3		5	
	$\mathbf{1}$						
$\mathbf{1}$							
$\overline{2}$							
$\overline{3}$							
				$\begin{array}{cccccc} & 1 & 1 & & & & \\ 1 & 1 & & & & & \\ 1 & 2 & 1 & & & & \\ & 1 & 3 & 3 & 1 & & \\ & & 4 & 6 & 4 & & \\ & & 5 & 10 & 10 & & \\ \end{array}$			
$5\overline{)}$			$10\,$		$\overline{5}$		
հ		$6\overline{6}$	15	$\overline{20}$	15	6	

Table 4.1: Pascal's Triangle of binomial coefficients.

Problem 4.4. Suppose you have a pool of 6 applicants for a job opening. Let's assume you believe the values in Table [4.1.](#page-1-0)

- (a) How many ways can you choose 3 of the 6 applicants to interview?
- (b) How many ways can you hire 3 of the 6 applicants for 3 distinct jobs?

Problem 4.5. What are the row sums in Pascal's Triangle? That is, what is the following sum equal to for any $n \geq 0$?

$$
\sum_{k=0}^n \binom{n}{k} := \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.
$$

Problem 4.6. Using the meanings of *k*-subset and *k*-permutation, explain why

$$
P(n,k) = \binom{n}{k} \cdot k!.
$$

Using the previous problem, we immediately get the following handy formula for computing binomial coefficients.

Theorem 4.7. For $0 \leq k \leq n$, we have

$$
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{P(n,k)}{k!}.
$$

In the last expression above, the numerator of $\frac{P(n,k)}{k!}$ is counting how many distinct arrangements (order matters) there are of *k* objects taken from *n* objects and the denominator is essentially unordering arrangements (by Division Principle) that consist of the same objects.

Problem 4.8. A state senate consists of 19 Republicans and 14 Democrats. In how many ways can a committee be chosen if:

(a) The committee contains 6 senators without regard to party?

(b) The committee contains 3 Republicans and 3 Democrats?

Problem 4.9. How many bit strings of length 10 have exactly three 1's?

Problem 4.10. How many bit strings of length 6 have an odd number of $0's$?

Problem 4.11. As we noted earlier, we did quite a bit of brute force to determine how many paths I could take to get coffee in Problem 1.15 . Find a solution that utilizes binomial coefficients.

Problem 4.12. How many strings of 10 lower-case English letters have exactly two *g*'s and exactly three *v*'s?

Problem 4.13. Assume $1 \leq k \leq n$.

(a) Using the definition of $\binom{n}{k}$ in terms of *k*-subsets (as opposed to the formula in Theorem [4.7\)](#page-1-1), explain why

$$
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.
$$

This identity is often called Pascal's Identity (or Pascal's Recurrence).

(b) Connect the formula above with Problem 1.15 involving my walk to get coffee.

Problem 4.14. Assume $1 \leq k \leq n$. It turns out that

$$
\binom{n}{k} = \binom{n}{n-k}.
$$

- (a) Prove the identity above using the formula for $\binom{n}{k}$ given in Theorem [4.7.](#page-1-1)
- (b) Explain why the identity is true by using the definition of $\binom{n}{k}$ in terms of *k*-subsets.

The upshot is that each row of Pascal's Triangle is a palindrome.

Problem 4.15. Explain why

$$
1 + 2 + \dots + n = \binom{n+1}{2}
$$

by counting the number of handshakes that could occur among a group of *n* + 1 people in two different ways.

By the way, the number defined by $t_n := 1 + 2 + \cdots + n$ is called the *n*th **Triangular** number (due to the shape we get by representing each number in the sum by a stack of balls).

Problem 4.16. Without appealing to the previous problem, find a visual proof of the following:

$$
1+2+\cdots+n=\frac{n(n+1)}{2}.
$$

Hint: Consider a rectangular array of balls that has *n* rows and $n + 1$ columns.

Problem 4.17. Consider the linear equation $x_1 + x_2 + x_3 = 11$. How many *integer* solutions are there if:

- (a) $x_1, x_2, x_3 \geq 0$?
- (b) $x_1, x_2, x_3 > 0$?
- (c) $x_1 \geq 1, x_2 \geq 0, x_3 \geq 2?$

Problem 4.18. How many ways can you distribute 5 identical lollipops to 6 kids?

These last two problems illustrate a technique known as stars and bars. In general, *n* stars tally the number of objects and $k-1$ bars separate them into k distinct categories.

Theorem 4.19. The number of possible collections of n objects of k different types is

$$
\left[\binom{n+k-1}{k-1} = \binom{n+k-1}{n} \right].
$$

Problem 4.20. Zittles come in 5 colors: green, yellow, red, orange, and purple. How many different collections of 32 Zittles are possible?