
Chapter 4

Combinations

The notion of k-permutations captures arrangements of distinct objects where order matters.
But what should we do if we want to capture a situation where the order of the objects does
not matter? Since the order of the objects in a set does not matter, this is the model we
should use.

If A is a set and B ✓ A with |B| = k, we refer to B as a k-subset of A. The collection
of all k-subsets of A is defined via

✓
A

k

◆
:= {B ✓ A | |B| = k}.

The binomial coe�cient is defined via

✓
n

k

◆
:= number of k-subsets of an n-element set.

In particular, if |A| = n, then |
�
A

k

�
| =

�
n

k

�
. We read “

�
n

k

�
” as “n choose k”. Alternate

notations for binomial coe�cients include C(n, k) and nCk. We will see later why
�
n

k

�
is

referred to as a binomial coe�cient.

Example 4.1. If A = {a, b, c, d}, then

✓
A

2

◆
= {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},

which implies that
�
4
2

�
= 6.

Problem 4.2. For any A, including the empty set, what is
�
A

0

�
? For n � 0, what is

�
n

0

�

equal to?

Problem 4.3. For n � 0, what is
�
n

n

�
equal to?

If we let n and k vary, we can organize the binomial coe�cients in a triangular array,
often referred to as Pascal’s Triangle. See Table 4.1.
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n \ k 0 1 2 3 4 5 6

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Table 4.1: Pascal’s Triangle of binomial coe�cients.

Problem 4.4. Suppose you have a pool of 6 applicants for a job opening. Let’s assume you
believe the values in Table 4.1.

(a) How many ways can you choose 3 of the 6 applicants to interview?

(b) How many ways can you hire 3 of the 6 applicants for 3 distinct jobs?

Problem 4.5. What are the row sums in Pascal’s Triangle? That is, what is the following
sum equal to for any n � 0?

nX

k=0

✓
n

k

◆
:=

✓
n

0

◆
+

✓
n

1

◆
+ · · ·+

✓
n

n

◆
.

Problem 4.6. Using the meanings of k-subset and k-permutation, explain why

P (n, k) =

✓
n

k

◆
· k!.

Using the previous problem, we immediately get the following handy formula for com-
puting binomial coe�cients.

Theorem 4.7. For 0  k  n, we have

✓
n

k

◆
=

n!

k!(n� k)!
=

P (n, k)

k!
.

In the last expression above, the numerator of P (n,k)
k! is counting how many distinct ar-

rangements (order matters) there are of k objects taken from n objects and the denominator
is essentially unordering arrangements (by Division Principle) that consist of the same ob-
jects.

Problem 4.8. A state senate consists of 19 Republicans and 14 Democrats. In how many
ways can a committee be chosen if:

(a) The committee contains 6 senators without regard to party?
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(b) The committee contains 3 Republicans and 3 Democrats?

Problem 4.9. How many bit strings of length 10 have exactly three 1’s?

Problem 4.10. How many bit strings of length 6 have an odd number of 0’s?

Problem 4.11. As we noted earlier, we did quite a bit of brute force to determine how
many paths I could take to get co↵ee in Problem 1.15. Find a solution that utilizes binomial
coe�cients.

Problem 4.12. How many strings of 10 lower-case English letters have exactly two g’s and
exactly three v’s?

Problem 4.13. Assume 1  k  n.

(a) Using the definition of
�
n

k

�
in terms of k-subsets (as opposed to the formula in Theo-

rem 4.7), explain why ✓
n

k

◆
=

✓
n� 1

k

◆
+

✓
n� 1

k � 1

◆
.

This identity is often called Pascal’s Identity (or Pascal’s Recurrence).

(b) Connect the formula above with Problem 1.15 involving my walk to get co↵ee.

Problem 4.14. Assume 1  k  n. It turns out that
✓
n

k

◆
=

✓
n

n� k

◆
.

(a) Prove the identity above using the formula for
�
n

k

�
given in Theorem 4.7.

(b) Explain why the identity is true by using the definition of
�
n

k

�
in terms of k-subsets.

The upshot is that each row of Pascal’s Triangle is a palindrome.

Problem 4.15. Explain why

1 + 2 + · · ·+ n =

✓
n+ 1

2

◆

by counting the number of handshakes that could occur among a group of n + 1 people in
two di↵erent ways.

By the way, the number defined by tn := 1 + 2 + · · ·+ n is called the nth Triangular

number (due to the shape we get by representing each number in the sum by a stack of
balls).

Problem 4.16. Without appealing to the previous problem, find a visual proof of the
following:

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Hint: Consider a rectangular array of balls that has n rows and n+ 1 columns.
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Problem 4.17. Consider the linear equation x1+x2+x3 = 11. How many integer solutions
are there if:

(a) x1, x2, x3 � 0?

(b) x1, x2, x3 > 0?

(c) x1 � 1, x2 � 0, x3 � 2?

Problem 4.18. How many ways can you distribute 5 identical lollipops to 6 kids?

These last two problems illustrate a technique known as stars and bars. In general, n
stars tally the number of objects and k � 1 bars separate them into k distinct categories.

Theorem 4.19. The number of possible collections of n objects of k di↵erent types is

✓
n+ k � 1

k � 1

◆
=

✓
n+ k � 1

n

◆
.

Problem 4.20. Zittles come in 5 colors: green, yellow, red, orange, and purple. How many
di↵erent collections of 32 Zittles are possible?
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