Chapter 4

Combinations

The notion of k-permutations captures arrangements of distinct objects where order matters. But what should we do if we want to capture a situation where the order of the objects does not matter? Since the order of the objects in a set does not matter, this is the model we should use.

If A is a set and $B \subseteq A$ with $|B|=k$, we refer to B as a k-subset of A. The collection of all k-subsets of A is defined via

$$
\binom{A}{k}:=\{B \subseteq A| | B \mid=k\}
$$

The binomial coefficient is defined via

$$
\binom{n}{k}:=\text { number of } k \text {-subsets of an } n \text {-element set. }
$$

In particular, if $|A|=n$, then $\left|\binom{A}{k}\right|=\binom{n}{k}$. We read " $\binom{n}{k}$ " as " n choose k ". Alternate notations for binomial coefficients include $C(n, k)$ and ${ }_{n} C_{k}$. We will see later why $\binom{n}{k}$ is referred to as a binomial coefficient.

Example 4.1. If $A=\{a, b, c, d\}$, then

$$
\binom{A}{2}=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\}
$$

which implies that $\binom{4}{2}=6$.
Problem 4.2. For any A, including the empty set, what is $\binom{A}{0}$? For $n \geq 0$, what is $\binom{n}{0}$ equal to?

Problem 4.3. For $n \geq 0$, what is $\binom{n}{n}$ equal to?
If we let n and k vary, we can organize the binomial coefficients in a triangular array, often referred to as Pascal's Triangle. See Table 4.1.

$n \backslash k$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Table 4.1: Pascal's Triangle of binomial coefficients.

Problem 4.4. Suppose you have a pool of 6 applicants for a job opening. Let's assume you believe the values in Table 4.1.
(a) How many ways can you choose 3 of the 6 applicants to interview?
(b) How many ways can you hire 3 of the 6 applicants for 3 distinct jobs?

Problem 4.5. What are the row sums in Pascal's Triangle? That is, what is the following sum equal to for any $n \geq 0$?

$$
\sum_{k=0}^{n}\binom{n}{k}:=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}
$$

Problem 4.6. Using the meanings of k-subset and k-permutation, explain why

$$
P(n, k)=\binom{n}{k} \cdot k!.
$$

Using the previous problem, we immediately get the following handy formula for computing binomial coefficients.

Theorem 4.7. For $0 \leq k \leq n$, we have

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{P(n, k)}{k!}
$$

In the last expression above, the numerator of $\frac{P(n, k)}{k!}$ is counting how many distinct arrangements (order matters) there are of k objects taken from n objects and the denominator is essentially unordering arrangements (by Division Principle) that consist of the same objects.

Problem 4.8. A state senate consists of 19 Republicans and 14 Democrats. In how many ways can a committee be chosen if:
(a) The committee contains 6 senators without regard to party?
(b) The committee contains 3 Republicans and 3 Democrats?

Problem 4.9. How many bit strings of length 10 have exactly three 1's?
Problem 4.10. How many bit strings of length 6 have an odd number of 0 's?
Problem 4.11. As we noted earlier, we did quite a bit of brute force to determine how many paths I could take to get coffee in Problem 1.15. Find a solution that utilizes binomial coefficients.

Problem 4.12. How many strings of 10 lower-case English letters have exactly two g 's and exactly three v 's?

Problem 4.13. Assume $1 \leq k \leq n$.
(a) Using the definition of $\binom{n}{k}$ in terms of k-subsets (as opposed to the formula in Theorem 4.7), explain why

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

This identity is often called Pascal's Identity (or Pascal's Recurrence).
(b) Connect the formula above with Problem 1.15 involving my walk to get coffee.

Problem 4.14. Assume $1 \leq k \leq n$. It turns out that

$$
\binom{n}{k}=\binom{n}{n-k}
$$

(a) Prove the identity above using the formula for $\binom{n}{k}$ given in Theorem 4.7.
(b) Explain why the identity is true by using the definition of $\binom{n}{k}$ in terms of k-subsets.

The upshot is that each row of Pascal's Triangle is a palindrome.
Problem 4.15. Explain why

$$
1+2+\cdots+n=\binom{n+1}{2}
$$

by counting the number of handshakes that could occur among a group of $n+1$ people in two different ways.

By the way, the number defined by $t_{n}:=1+2+\cdots+n$ is called the nth Triangular number (due to the shape we get by representing each number in the sum by a stack of balls).

Problem 4.16. Consider the linear equation $x_{1}+x_{2}+x_{3}=11$. How many integer solutions are there if:
(a) $x_{1}, x_{2}, x_{3} \geq 0$?
(b) $x_{1}, x_{2}, x_{3}>0$?
(c) $x_{1} \geq 1, x_{2} \geq 0, x_{3} \geq 2$?

Problem 4.17. How many ways can you distribute 5 identical lollipops to 6 kids?
These last two problems illustrate a technique known as stars and bars. In general, n stars tally the number of objects and $k-1$ bars separate them into k distinct categories.

Theorem 4.18. The number of possible collections of n objects of k different types is

$$
\binom{n+k-1}{k-1}=\binom{n+k-1}{n}
$$

Problem 4.19. Zittles come in 5 colors: green, yellow, red, orange, and purple. How many different collections of 32 Zittles are possible?

