I write one page of masterpiece to ninety-one
pages of shit.

Ernest Hemingway, novelist & journalist

Chapter 8

Functions

In this chapter, we will introduce the concept of function as a special type of relation.
Our definition should agree with any previous definition of function that you may have
learned. We will also study various properties that a function may or may not possess.

8.1 Introduction to Functions

Up until this point, you may have only encountered functions as an algebraic rule, e.g.,
f(x) = x* — 1, for transforming one real number into another. However, we can study
functions in a much broader context. The basic building blocks of a function are a first
set and a second set, say X and Y, and a “correspondence” that assigns every element of
X to exactly one element of Y. Let’s take a look at the actual definition.

Definition 8.1. Let X and Y be two nonempty sets. A function f from X to Y is a relation
from X to Y such that for every x € X, there exists a unique y € Y such that (x,y) € f. The

set X is called the domain of f and is denoted by |Dom(f)|. The set Y is called the

codomain of f and is denoted by | Codom(f) | while the subset of the codomain defined
via

‘Rng(f) :={y € Y | there exists x such that (x,y) € f}]

is called the range of f or the image of X under f.

There is a variety of notation and terminology associated to functions. We will write
to indicate that f is a function from X to Y. We will make use of statements
such as “Let f : X — Y be the function defined via...” or “Define f : X — Y via...”, where
f is understood to be a function in the second statement. Sometimes the word mapping
(or map) is used in place of the word function. If (a,b) € f for a function f, we often write
and say that “f maps a to b” or “f of a equals b”. In this case, a may be called
an input of f and is the preimage of b under f while b is called an output of f and is
the image of a under f. Note that the domain of a function is the set of inputs while the
range is the set of outputs for the function.

According to our definition, if f : X — Y is a function, then every element of the
domain is utilized exactly once. However, there are no restrictions on whether an element
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CHAPTER 8. FUNCTIONS

of the codomain ever appears in the second coordinate of an ordered pair in the relation.
Yet if an element of Y is in the range of f, it may appear in more than one ordered pair in
the relation.

It follows immediately from the definition of function that two functions are equal
if and only if they have the same domain, same codomain, and the same set of ordered
pairs in the relation. That is, functions f and g are equal if and only if Dom(f) = Dom(g),
Codom(f) = Codom(g), and f(x) = g(x) for all x € X.

Since functions are special types of relations, we can represent them using digraphs
and graphs when practical. Digraphs for functions are often called function (or map-
ping) diagrams. When drawing function diagrams, it is standard practice to put the
vertices for the domain on the left and the vertices for the codomain on the right, so that
all directed edges point from left to right. We may also draw an additional arrow labeled
by the name of the function from the domain to the codomain.

Example 8.2. Let X ={a,b,c,d} to Y ={1,2, 3,4} and define the relation f from X to Y via
f=1(a2),(b,4),(c4),(d,1)}

Since each element X appears exactly once as a first coordinate, f is a function with
domain X and codomain Y (i.e., f : X — Y). In this case, we see that Rng(f) = {1,2,4}.
Moreover, we can write things like f(a) = 2 and ¢ 4, and say things like “f maps b to
4” and “the image of 4 is 1.” The function diagram for f is depicted in Figure 8.1.

f
T
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® © ®© ©
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Figure 8.1: Function diagram for a function from X = {a,b,c,d,} to Y ={1,2,3,4}.

Problem 8.3. Determine whether each of the relations defined in the following examples
and problems is a function.

(a) Example 7.3 (see Figure 7.1)
(b) Example 7.14 (see Figure 7.3)
(c) Problem 7.15
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CHAPTER 8. FUNCTIONS

(d) Problem 7.21

Problem 8.4. Let X = {o,[J,A,®}and Y ={a,b,c,d,e}. For each of the following relations,
draw the corresponding digraph and determine whether the relation represents a func-
tion from X to Y, Y to X, X to X, or does not represent a function. If the relation is a
function, determine the domain, codomain, and range.

(@) f=1{(c,a), (03, D), (a,¢),(©,d))

(b) g ={(e,a),(00,b),(4,¢), (O, c)}

(c) h={(c,a),(03,b),(a,c) (o,d))

(d) k={(c,a),(03,D),(a,¢),(©,d), (0], e)}

(e) I={(o,e),(e), (A e),(O,e))

(f) m={(o,a),(4,b),(O,c)}

(8) i={(o,0),(L],00),(a,4),(0,0))

(h) Define the relation happy from Y to X via (y,®) € happy forall y e Y.
(i) nugget = {(c,0),(03,1J), (4, 4),(®, 1)}

The last two parts of the previous problem make it clear that functions may have
names consisting of more than one letter. The function names sin, cos, log, and In are
instances of this that you have likely encountered in your previous experience in math-
ematics. One thing that you may have never noticed is the type of font that we use for
function names. It is common to italicize generic function names like f but not common
function names like sin. However, we always italicize the variables used to represent
the input and output for a function. For example, consider the font types used in the
expressions sin(x) and In(a).

Problem 8.5. What properties does the digraph for a relation from X to Y need to have
in order for it to represent a function?

Problem 8.6. In high school you may have been told that a graph represents a function
if it passes the vertical line test. Carefully state what the vertical line test says and then
explain why it works.

Sometimes we can define a function using a formula. For example, we can write
f(x) = x> =1 to mean that each x in the domain of f maps to x> — 1 in the codomain.
However, notice that providing only a formula is ambiguous! A function is determined
by its domain, codomain, and the correspondence between these two sets. If we only pro-
vide a description for the correspondence, it is not clear what the domain and codomain
are. Two functions that are defined by the same formula, but have different domains or
codomains are not equal.
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CHAPTER 8. FUNCTIONS

Example 8.7. The function f : R — R defined via f(x) = x*>—1 is not equal to the function
¢:N — R defined by g(x) = x> — 1 since the two functions do not have the same domain.

Sometimes we rely on context to interpret the domain and codomain. For example,
in a calculus class, when we describe a function in terms of a formula, we are implicitly
assuming that the domain is the largest allowable subset of R—sometimes called the
default domain—that makes sense for the given formula while the codomain is R.

Example 8.8. If we write f(x) = x*> — 1, g(x) = v/x, and h(x) = 1 without mentioning the

X
domains, we would typically interpret these as the functions f : R > R, g:[0,00) - R,
and h: R\ {0} — R that are determined by their respective formulas.

Problem 8.9. Provide an example of each of the following. You may draw a function
diagram, write down a list of ordered pairs, or write a formula as long as the domain and
codomain are clear.

(a) A function f from a set with 4 elements to a set with 3 elements such that Rng(f) =
Codom(f).

(b) A function g from a set with 4 elements to a set with 3 elements such that Rng(g) is
strictly smaller than Codom(g).

Problem 8.10. Let f : X — Y be a function and suppose that X and Y are finite sets with
n and m elements, respectively, such that n < m. Is it possible for Rng(f) = Codom(f)? If
so, provide an example. If this is not possible, explain why.

There are a few special functions that we should know the names of.

Definition 8.11. If X and Y are nonempty sets such that X C Y, then the function:: X —
Y defined via i(x) = x is called the inclusion map from X into Y.

Note that “1” is the Greek letter “iota”.

Problem 8.12. Let X ={a,b,c} and Y ={a,b,c,d}. Draw the function diagram of the inclu-
sion map from X into Y.

If the domain and codomain are equal, the inclusion map has a special name.

Definition 8.13. If X is a nonempty set, then the function iy : X — X defined via ix(x) = x
is called the identity map (or identity function) on X.

Example 8.14. The relation defined in Problem 8.4(g) is the identity map on X = {o,[], A, ®}.
Problem 8.15. Draw a portion of the graph of the identity map on R as a subset of R?.

Definition 8.16. Any function f : X — Y defined via f(x) = c for a fixed c € Y is called a
constant function.

Example 8.17. The function defined in Problem 8.4(h) is an example of a constant func-
tion. Notice that we can succinctly describe this function using the formula happy(y) = ©.
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CHAPTER 8. FUNCTIONS

Definition 8.18. A piecewise-defined function (or piecewise function) is a function
defined by specifying its output on a partition of the domain.

Note that “piecewise” is a way of expressing the function, rather than a property of
the function itself.

Example 8.19. We can express the function in Problem 8.4(i) as a piecewise function

using the formula
x, if x is a geometric shape,

nugget(x) = {

O, otherwise.
Example 8.20. The function f : R — R defined via

x2-1, ifx>0,
fx)=417, if —2<x<0,
—X, ifx<-=2

is an example of a piecewise-defined function.

Problem 8.21. Define f : R\ {0} —» R via f(x) = % Express f as a piecewise function.

It is important to point out that not every function can be described using a formula!
Despite your prior experience, functions that can be represented succinctly using a for-
mula are rare.

The next problem illustrates that some care must be taken when attempting to define
a function.

Problem 8.22. For each of the following, explain why the given description does not
define a function.

(a) Define f:{1,2,3} - {1,2,3} via f(a) =a-1.
(b) Define g: N — Q via g(n) = -15.
(c) Let Ay ={1,2,3} and A, ={3,4,5}. Define h: A; UA, — {1,2} via

h(x): 1, ?fXEAl
2, ifxeA,.

(d) Define s:Q — Z via s(a/b) = a+b.

In mathematics, we say that an expression is well defined (or unambiguous) if its
definition yields a unique interpretation. Otherwise, we say that the expression is not
well defined (or is ambiguous). For example, if a,b,c € R, then the expression abc is
well defined since it does not matter if we interpret this as (ab)c or a(bc) since the real
numbers are associative under multiplication. This issue was lurking behind the scenes
in the statement of Theorem 7.94. In particular, the expressions

[alln + [32]11 teeet [ak]n
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and
[al]n[a2]n T [ak]n

are well defined in Z/nZ in light of Theorems 7.92(b) and 7.93(b).

When we attempt to define a function, it may not be clear without doing some work
that our definition really does yield a function. If there is some potential ambiguity in
the definition of a function that ends up not causing any issues, we say that the func-
tion is well defined. However, this phrase is a bit of misnomer since all functions are
well defined. The issue of whether a description for a proposed function is well defined
often arises when defining things in terms of representatives of equivalence classes, or
more generally in terms of how an element of the domain is written. For example, the
descriptions given in Parts (c) and (d) of Problem 8.22 are not well defined. To show that
a potentially ambiguous description for a function f : X — Y is well defined prove that if
a and b are two representations for the same element in X, then f(a) = f(b).

Problem 8.23. For each of the following, determine whether the description determines
a well-defined function.

(a) Define f : Z/5Z — N via
0, ifaiseven

fllals) = {1, if a is odd.

(b) Define g:7Z/6Z — N via
0, ifaiseven
1, if aisodd.

g(lals) ={
(c) Define m: Z/87 — Z/10Z via m([x]g) = [6x]1¢
(d) Define h:Z/10Z — Z/10Z via h([x];0) = [6x]10-
(e) Define k : Z/437Z — Z/437 via k([x]43) = [11x — 5]43.
(f) Define ¢ :Z/15Z — Z/15Z via €([x];5) = [5x — 11];5.

Problem 8.24. Let k,n € N and m € Z. Under what conditions will f,, : Z/nZ — Z/k’Z
given by f,,([x],) = [mx]; be a well-defined function? Prove your claim.

Don’t let anyone rob you of your imagination,
your creativity, or your curiosity. It’s your place
in the world; it’s your life. Go on and do all you
can with it, and make it the life you want to live.

Mae Jemison, NASA astronaut
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8.2 Injective and Surjective Functions

We now turn our attention to some important properties that a function may or may not
possess. Recall that if f is a function, then every element in its domain is mapped to a
unique element in the range. However, there are no restrictions on whether more than
one element of the domain is mapped to the same element in the range. If each element
in the range has a unique element in the domain mapping to it, then we say that the
function is injective. Moreover, the range of a function is not required to be all of the
codomain. If every element of the codomain has at least one element in the domain that
maps to it, then we say that the function is surjective. Let’s make these definitions a bit
more precise.

Definition 8.25. Let f : X — Y be a function.

(a) The function f is said to be injective (or one-to-one) if for all y € Rng(f), thereis a
unique x € X such that y = f(x).

(b) The function f is said to be surjective (or onto) if for all y € Y, there exists x € X
such that y = f(x).

(c) If f is both injective and surjective, we say that f is bijective.

Problem 8.26. Compare and contrast the following statements. Do they mean the same
thing?

(a) For all x € X, there exists a unique y € Y such that f(x) =7v.
(b) For all y € Rng(f), there is a unique x € X such that y = f(x).

Problem 8.27. Assume that X and Y are finite sets. Provide an example of each of the
following. You may draw a function diagram, write down a list of ordered pairs, or write
a formula as long as the domain and codomain are clear.

(a) A function f : X — Y that is injective but not surjective.

(b) A function f : X — Y that is surjective but not injective.

(c) A function f : X — Y that is a bijection.

(d) A function f : X — Y that is neither injective nor surjective.

Problem 8.28. Provide an example of each of the following. You may either draw a graph
or write down a formula. Make sure you have the correct domain.

(a) A function f : R — R that is injective but not surjective.
(b) A function f : R — R that is surjective but not injective.
(c) A function f : R — R that is a bijection.

(d) A function f : R — R that is neither injective nor surjective.
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(e) A function f : NxN — N that is injective.

Problem 8.29. Suppose X C R and f : X — R is a function. Fill in the blank with the
appropriate word.

The function f : X — R is if and only if every horizontal line hits
the graph of f at most once.

This statement is often called the horizontal line test. Explain why the horizontal line
test is true.

Problem 8.30. Suppose X C R and f : X — R is a function. Fill in the blank with the
appropriate word.

The function f : X — R is if and only if every horizontal line hits
the graph of f at least once.

Explain why this statement is true.

Problem 8.31. Suppose X C R and f : X — R is a function. Fill in the blank with the
appropriate word.

The function f : X - R is if and only if every horizontal line hits
the graph of f exactly once.

Explain why this statement is true.

How do we prove that a function f is injective? We would need to show that every
element in the range has a unique element from the domain that maps to it. First, notice
that each element in the range can be written as f(x) for at least one x in the domain.
To argue that each such element in domain is unique, we can suppose f(x;) = f(x;) for
arbitrary x; and x; in the domain and then work to show that x; = x,. It is important to
point out that when we suppose f(x;) = f(x,) for some x; and x,, we are not assuming
that x; and x, are different. In general, when we write “Let x1,x, € X...”, we are leaving
open the possibility that x; and x, are actually the same element. One could approach
proving that a function is injective by utilizing a proof by contradiction, but this is not
usually necessary.

Skeleton Proof 8.32 (Proof that a function is injective). Here is the general structure for
proving that a function is injective.

( N

Proof. Assume f : X — Y is a function defined by (or satisfying)...[Use the given
definition (or describe the given property) of f]. Let x1,x, € X and suppose f(x;) =

f(xa).
... [Use the definition (or property) of f to verify that x; = x;] ...

Therefore, the function f is injective. [
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How do we prove that a function f is surjective? We would need to argue that every
element in the codomain is also in the range. Sometimes, the proof that a particular func-
tion is surjective is extremely short, so do not second guess yourself if you find yourself
in this situation.

Skeleton Proof

8.33 (Proof that a function is surjective). Here is the general structure for

proving that a function is surjective.

definition (or

-

p
Proof. Assume f : X — Y is a function defined by (or satisfying)...[Use the given

... [Use the definition (or property) of f to find some x € X such that f(x)=yp] ...

Therefore, the function f is surjective. O

~

describe the given property) of f]. Lety € Y.

J

Problem 8.34.

Determine whether each of the following functions is injective, surjec-

tive, both, or neither. In each case, you should provide a proof or a counterexample as

appropriate.
(a) Define f :
(b) Define g:
(c) Define h:
(d) Define k:
(e) Define c:
(f) Define f :

(g) Define g:

(h) Define ¢:

R — R via f(x) = x?

R — [0, c0) via g(x) = x2

R — R via h(x) = x>

R — R via k(x) = x3 — x

R xR — R via c(x,y) = x> + 92
N — NxNvia f(n) = (n,n)

7, — 7, via

n if nis even
g(n) = {,%

%1, if nis odd

7, — N via

{(n) =

2n+1, ifn>0
—2n, ifn<0

(i) The function h defined in Problem 8.23(d).
(j) The function k defined in Problem 8.23(e).
(k) The function ¢ defined in Problem 8.23(f).

Problem 8.35. Suppose X and Y are nonempty sets with m and n elements, respectively,

where m < n. How many injections are there from X to Y?
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Problem 8.36. Compare and contrast the definition of “function” with the definition of
“injective function”. Consider the vertical line test and horizontal line test in your dis-
cussion. Moreover, attempt to capture what it means for a relation to not be a function
and for a function to not be an injection by drawing portions of a digraph.

The next two theorems should not come as as surprise.
Theorem 8.37. The inclusion map 1: X — Y for X C Y is an injection.
Theorem 8.38. The identity function iy : X — X is a bijection.

Problem 8.39. Let A and B be nonempty sets and let S be a nonempty subset of A x B.
Define 171 : S - A and w, : S — B via 1ty(a,b) = a and 7,(a,b) = b. We call 7y and 7, the
projections of S onto A and B, respectively.

a) Provide examples to show that 7ty does not need to be injective nor surjective.
p 1 ] ]
(b) Suppose that S is also a function. Is 77y injective? Is 7ty surjective? How about 7t,?

The next theorem says that if we have an equivalence relation on a nonempty set,
the mapping that assigns each element to its respective equivalence class is a surjective
function.

Theorem 8.40. If ~ is an equivalence relation on a nonempty set A, then the function
f:A— A/~ defined via f(x) = [x] is a surjection.

The function from the previous theorem is sometimes called the canonical projection
map induced by ~.

Problem 8.41. Under what circumstances would the function from the previous theorem
also be injective?

Let’s explore whether we can weaken the hypotheses of Theorem 8.40.
Problem 8.42. Let R be a relation on a nonempty set A.

(a) What conditions on R must hold in order for f : A — Rel(R) defined via f(a) = rel(a)
to be a function?

(b) What additional conditions, if any, must hold on R in order for f to be a surjective
function?

Problem 8.43. Let A be a nonempty set.

(a) Suppose R is an equivalence relation on A. Under what conditions is R a function
from A to A?

(b) Suppose f : A — Ais a function. Under what conditions is f an equivalence relation
on A?

Given any function, we can define an equivalence relation on its domain, where the
equivalence classes correspond to the elements that map to the same element of the range.
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Theorem 8.44. Let f : X — Y be a function and define ~ on X via a ~ b if f(a) = f(b).
Then ~ is an equivalence relation on X.

It follows immediately from Theorem 7.59 that the equivalence classes induced by the
equivalence relation in Theorem 8.44 partition the domain of a function.

Problem 8.45. For each of the following, identify the equivalence classes induced by the
relation from Theorem 8.44 for the given function.

(a) The function f defined in Example 8.2.
(b) The function c defined in Problem 8.34(e).

If f is a function, the equivalence relation in Theorem 8.44 allows us to construct a
bijective function whose domain is the set of equivalence classes and whose codomain
coincides with the range of f. This is an important idea that manifests itself in many
areas of mathematics. One such instance is the First Isomorphism Theorem for Groups,
which is a fundamental theorem in a branch of mathematics called group theory. When
proving the following theorem, the first thing you should do is verify that the description
for f is well defined.

Theorem 8.46. Let f : X — Y be a function and define ~ on X as in Theorem 8.44. Then
the function f : X/~ — Rng(f) defined via f([a]) = f(a) is a bijection.

Here is an analogy for helping understand the content of Theorem 8.46. Suppose we
have a collection airplanes filled with passengers and a collection of potential destination
cities such that at most one airplane may land at each city. The function f indicates which
city each passenger lands at while the function f indicates which city each airplane lands
at. Moreover, the codomain for the function f consists only of the cities that an airplane
lands at.

Example 8.47. Let X ={a,b,c,d,e,f} and Y ={1,2,3,4,5} and define ¢ : X — Y via

¢ ={(a,1),(b,1),(c,2),(d, 4), (e, 4),(f,4)}.

The function diagram for ¢ is given in Figure 8.2(a), where we have highlighted the
elements of the domain that map to the same element in the range by enclosing them
in additional boxes. We see that Rng(¢) = {1, 2,4}. The function diagram for the induced
map @ that is depicted in Figure 8.2(b) makes it clear that ¢ is a bijection. Note that since
p(a) = @(b) and @(d) = @(e) = @(f), it must be the case that [a] = [b] and [d] = [e] = [f]
according to Theorem 7.42. Thus, the vertices labeled as [4] and [d] in Figure 8.2(b) could
have also been labeled as [b] and [c] or [d], respectively. In terms of our passengers and
airplanes analogy, X = {a,b,c,d,e, f} is the set of passengers, Y = {1,2,3,4,5} is the set
of potential destination cities, X/~ = {[a],[c],[d]} is the set of airplanes, and Rng(¢) =
{1,2,4} is the set of cities that airplanes land at. The equivalence class [4] is the airplane
containing the passenger a, and since 4 and b are on the same plane, [b] is also the plane
containing the passenger a.
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Figure 8.2: Example of a visual representation of Theorem 8.46.

Problem 8.48. Consider the equivalence classes you identified in Parts (a) and (b) of Prob-
lem 8.45.

(a) Draw the function diagram for the function ]_[ as defined in Theorem 8.46, where f
is the function defined in Example 8.2.

(b) Describe the function ¢ as defined in Theorem 8.46, where c is the function defined
in Problem 8.34(e).

While perhaps not surprising, Problem 8.48(b) tells us that there is a one-to-one cor-
respondence between circles centered at the origin and real numbers.

Problem 8.49. Let Y ={0, 1, 2,3} and define the function f : Z — Y such that f(n) equals
the unique remainder obtained after dividing n by 4. For example, f(11) = 3 since
11 =42+ 3 according to the Division Algorithm (Theorem 6.7). This function is some-
times written as f(n) = n (mod 4), where it is understood that we restrict the output to
{0,1,2,3}. It is clear that f is surjective since 0, 1, 2, and 3 are mapped to 0, 1, 2, and 3,
respectively. Figure 8.3 depicts a portion of the function diagram for f, where we have
drawn the diagram from the top down instead of left to right.

(a) Describe the equivalence classes induced by the relation given in Theorem 8.44.
(b) What familiar set is Z/~ equal to?

(c) Draw the function diagram for the function f as defined in Theorem 8.46.
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Figure 8.3: Function diagram for the function described in Problem 8.49.

(d) The function diagram in Figure 8.3 is a bit hard to interpret due to the ordering of
the elements in the domain. Can you find a better way to lay out the vertices in the
domain that makes the function f easier to interpret?

Problem 8.50. Consider the function k defined in Problem 8.23(d).

(a) Draw the function diagram for h.
(b) Identify the equivalence classes induced by the relation given in Theorem 8.44.

(c) Draw the function diagram for the function h as defined in Theorem 8.46.

Problem 8.51. Suppose that f : R — R is a function satisfying f(x+7vy) = f(x)+ f (v) for all
x,yeR.

(a) Prove that f(0) = 0.

(b) Prove that f(—x)=—f(x) for all x e R.

(c) Prove that f is one-to-one if and only if f~1({0}) = {0}.
)

(d) Certainly every function given by f(x) = mx for m € R satisfies the initial hypothesis.
Can you provide an example of a function that satisfies f(x+y) = f(x)+ f(y) that is
not of the form f(x) = mx?

It is not the critic who counts; not the man who points out how the strong
man stumbles, or where the doer of deeds could have done them better. The
credit belongs to the man who is actually in the arena, whose face is marred
by dust and sweat and blood; who strives valiantly; who errs, who comes
short again and again, because there is no effort without error and
shortcoming; but who does actually strive to do the deeds; who knows great
enthusiasms, the great devotions; who spends himself in a worthy cause; who
at the best knows in the end the triumph of high achievement, and who at the
worst, if he fails, at least fails while daring greatly, so that his place shall
never be with those cold and timid souls who neither know victory nor defeat.

Theodore Roosevelt, statesman & conservationist
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8.3 Compositions and Inverse Functions
We begin this section with a method for combining two functions together that have
compatible domains and codomains.

Definition 8.52. If f : X — Y and g: Y — Z are functions, we define go f : X — Z via
[(g of)(x)=g(f(x)) l The function go f is called the composition of f and g.

It is important to notice that the function on the right is the one that “goes first.”
Moreover, we cannot compose any two random functions since the codomain of the first
function must agree with the domain of the second function. In particular, f o g may not
be a sensible function even when go f exists. Figure 8.4 provides a visual representation
of function composition in terms of function diagrams.

gof

Figure 8.4: Visual representation of function composition.

Problem 8.53. Let X ={1,2,3,4} and define f : X > X and g: X — X via
f = {(17 1),(2,3),(3,3), (414)}

and
g=1{(1,1),(2,2),(3,1),(41)}.

For each of the following functions, draw the corresponding function diagram in the
spirit of Figure 8.4 and identify the range.

(a) gof
(b) fog

Example 8.54. Consider the inclusion map 1: X — Y such that X is a proper subset of Y
and suppose f : Y — Z is a function. Then the composite function f o1: X — Z is given
by

foux) = flux)) = f(x)
for all x € X. Notice that f o1 is simply the function f but with a smaller domain. In this
case, we say that f o1 is the restriction of f to X, which is often denoted by .
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The next problem illustrates that f o g and g o f need not be equal even when both
composite functions exist.

Problem 8.55. Define f : R — Rand g: R — Rvia f(x) = x*> and g(x) = 3x—5, respectively.
Determine formulas for the composite functions f o gand go f.

Problem 8.56. Define f :R - R and g: R — R via

f(x):{5x+7, if x <0

2x+1, ifx>0

and g(x) = 7x — 11, respectively. Find a formula for the composite function go f.

Problem 8.57. Define f : Z/15Z — Z/23Z and g : Z/237 — 7/327 via f([x]15) = [3x + 5],3
and g([x],3) = [2x + 1]37, respectively. Find a formula for the composite function go f.

The following result provides some insight into where the identity map got its name.

Theorem 8.58. If f : X — Y is a function, then f oix = f =iy o f, where ix and iy are the
identity maps on X and Y, respectively.

The next theorem tells us that function composition is associative.

Theorem 8.59. If f : X > Y, ¢:Y —» Z,and h: Z — W are functions, then (hog)o f =
ho(gof).

Problem 8.60. In each case, give examples of finite sets X, Y, and Z, and functions f :
X — Y and g: Y — Z that satisfy the given conditions. Drawing a function diagram is
sufficient.

(a) f issurjective, but go f is not surjective.
(b) g is surjective, but g o f is not surjective.
(c) f isinjective, but g o f is not injective.
(d) gisinjective, but go f is not injective.

Theorem 8.61. If f : X — Y and g: Y — Z are both surjective functions, then go f is also
surjective.

Theorem 8.62. If f : X — Y and g: Y — Z are both injective functions, then go f is also
injective.

Corollary 8.63. If f : X — Y and g: Y — Z are both bijections, then gof is also a bijection.

Problem 8.64. Assume that f : X — Y and g: Y — Z are both functions. Determine
whether each of the following statements is true or false. If a statement is true, prove it.
Otherwise, provide a counterexample.

(a) If go f is injective, then f is injective.
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(b) If go f is injective, then g is injective.
(c) If go f is surjective, then f is surjective.
(d) If gof is surjective, then g is surjective.

Theorem 8.65. Let f : X — Y be a function. Then f is injective if and only if there exists
a function g: Y — X such that go f =iy, where iy is the identity map on X.

The function g in the previous theorem is often called a left inverse of f.

Theorem 8.66. Let f : X — Y be a function. Then f is surjective if and only if there exists
a function g : Y — X such that f o g = iy, where iy is the identity map on Y.

The function g in the previous theorem is often called a right inverse of f.

Problem 8.67. Provide an example of a function that has a left inverse but does not have
a right inverse. Find the left inverse of your proposed function.

Problem 8.68. Provide an example of a function that has a right inverse but does not
have a left inverse. Find the right inverse of your proposed function.

Corollary 8.69. If f : X — Y and g: Y — X are functions satisfying gof =iy and fog =iy,
then f is a bijection.

In the previous result, the functions f and g “cancel” each other out. In this case, we
say that g is a two-sided inverse of f.

Definition 8.70. Let f : X — Y be a function. The relation f~! from Y to X, called f
inverse, is defined via

= ((fa)x) e YxX | xeX)

Notice that we called f~! a relation and not a function. In some circumstances f !
will be a function and sometimes it will not be. Given a function f, the inverse relation
is simply the set of ordered pairs that results from reversing the ordered pairs in f. It is
worth pointing out that we have only defined inverse relations for functions. However,
one can easily adapt our definition to handle arbitrary relations.

Problem 8.71. Consider the function f given in Example 8.2 (see Figure 8.1). List the
ordered pairs in the relation f~! and draw the corresponding digraph. Is f~! a function?

Problem 8.72. Provide an example of a function f : X — Y such that f~! is a function.
Drawing a function diagram is sufficient.

Problem 8.73. Suppose X C R and f : X — R is a function. What is the relationship
between the graph of the function f and the graph of the inverse relation f~1?

Theorem 8.74. Let f : X — Y be a function. Then f~!: Y — X is a function if and only if
f is a bijection.
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Problem 8.75. Suppose X C R and f : X — R is a function. Fill in the blank with the
appropriate phrase.

The relation f ! is a function if and only if every horizontal line hits the graph

of f

Explain why this statement is true.

Theorem 8.76. If f : X — Y is a bijection, then
(a) f~lo f =ix,and
(b) fof™ =iy.
Theorem 8.77. If f : X — Y is a bijection, then f~!: Y — X is also a bijection.

Theorem 8.78. If f : X — Y and g: Y — X are functions such that gof =iy and fog =iy,
then f~!is a function and g = f~1.

The upshot of Theorems 8.76 and 8.78 is that if f ! is a function, then it is the only one
satisfying the two-sided inverse property exhibited in Corollary 8.69 and Theorem 8.76.
That is, inverse functions are unique when they exist. When the relation f~! is a function,
we call it the inverse function of f.

Theorem 8.79. If f : X — Y is a bijection, then (f~!)~! = f.

In the previous theorem, we restricted our attention to bijections so that f~! would be
a function, thus making (f~!)~! a sensible inverse relation in light of Definition 8.70. If
we had defined inverses for arbitrary relations, then we would not have needed to require
the function in Theorem 8.79 to be a bijection. In fact, we do not even need to require
the relation to be a function. That is, if R is a relation from X to Y, then (R‘l)_1 =R, as
expected. Similarly, the next result generalizes to arbitrary relations.

Theorem 8.80. If f : X — Y and g: Y — Z are both bijections, then (go f)™' = f1o gl

The previous theorem is sometimes referred to as the “socks and shoes theorem”. Do
you see how it got this name?

The most difficult thing is the decision to act.
The rest is merely tenacity.

Amelia Earhart, aviation pioneer
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8.4 Images and Preimages of Functions

There are two important types of sets related to functions.
Definition 8.81. Let f : X — Y be a function.

(a) If S € X, the image of S under f is defined via

£(S) ={f(x) | xS}

(b) If T C Y, the preimage (or inverse image) of T under f is defined via

fUT) = (xeX | f(x) €T,

The image of a subset S of the domain is simply the subset of the codomain we obtain
by mapping the elements of S. It is important to emphasize that the function f maps
elements of X to elements of Y, but we can apply f to a subset of X to yield a subset of Y.
That is, if S C X, then f(S) C Y. Note that the image of the domain is the same as the
range of the function. That is, f(X) = Rng(f).

When it comes to preimages, there is a real opportunity for confusion. In Section 8.3,
we introduced the inverse relation f~! of a function f (see Defintion 8.70) and proved that
this relation is a function exactly when f is a bijection (see Theorem 8.74). If f~1: Y — X
is a function, then it is sensible to write f~!(y) for y € Y. Notice that we defined the
preimage of a subset of the codomain regardless of whether f~! is a function or not. In
particular, for TCY, f ~1(T) is the set of elements in the domain that map to elements in
T. As a special case, f!({y}) is the set of elements in the domain that map toy € Y. If
v ¢ Rng(f), then f~1({y}) = 0. Notice that if y € Y, f~!({p}) is always a sensible thing to
write while f~1(y) only makes sense if f~! is a function. Also, note that the preimage of
the codomain is the domain. That is, f~}(Y) = X.

Problem 8.82. Define f : Z — Z via f(x) = x>. List elements in each of the following sets.
(a) f({0,1,2})
(b) f71({0,1,4})
Problem 8.83. Define f : R — R via f(x) = 3x% — 4. Find each of the following sets.
(a) f({-1,1})
(b) f([-2,4])
(c) ((-2,4))
(d) f([-10,1])
(e) f71((=3,3))
(f) 1(0)
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f(R)
(h) f~H({-1)
(i) f7(0)
G fR)
Problem 8.84. Define f : R — R via f(x) = x°.

(8)

-1

(a) Find two nonempty subsets A and B of R such that ANB =0 but f~1(A) = f~1(B).
(b) Find two nonempty subsets A and B of R such that AN B =0 but f(A) = f(B).

Problem 8.85. Consider the equivalence relation given in Theorem 8.44. Explain why
each equivalence class [a] is equal to f~1({f(a)}).

Problem 8.86. Suppose f : X — Y is an injection and A and B are disjoint subsets of X.
Are f(A) and f(B) necessarily disjoint subsets of Y? If so, prove it. Otherwise, provide a
counterexample.

Problem 8.87. Find examples of functions f and g together with sets S and T such that
fUfUT) =T and g (g(S)) = S.

Problem 8.88. Let f : X — Y be a function and suppose A,BC X and C,D C Y. Determine
whether each of the following statements is true or false. If a statement is true, prove it.
Otherwise, provide a counterexample.

(a) If ACB, then f(A)C f(B).
(b) If CC D, then f~1(C)C fY(D).
)

(c) f(AUB)C f(A)U f(B).
(d) f(AUB)2 f(A)U f(B).
(e) f(ANB)C f(A)Nf(B).
(f) f(ANB)2 f(A)Nf(B).
(g) fH(CUD)CfHC)Uf (D).
(h) f7(CuD)2 fH(C)Uf(D).
@) fFienD)cfHC)nfHD).
G) fHCnD)2 fHC)N YD)

117



CHAPTER 8. FUNCTIONS

(n) f(fH(C)2C.

Problem 8.89. For each of the statements in the previous problem that were false, deter-
mine conditions, if any, on the corresponding sets that would make the statement true.

We can generalize the results above to handle arbitrary collections of sets.

Theorem 8.90. Let f : X — Y be a function and suppose {A,}4eca is a collection of subsets
of X.

Theorem 8.91. Let f : X — Y be a function and suppose {C,},ea is a collection of subsets
of Y.

@ FH U Ca|= " (Ca).
ael ael

®) M\ Cal|=[ ) (Ca)
ael aceA

The obstacle is the path.

Zen saying, Author Unknown

8.5 Continuous Real Functions

In this section, we will explore the concept of continuity, which you likely encountered
in high school.

Definition 8.92. A real function is any function f : A — R such that A is a nonempty
subset of R.

There are several equivalent definitions of continuity for real functions. The follow-
ing characterization is typically referred to as the epsilon-delta definition of continu-
ity. Our definition mimics the definition of continuity used in metric spaces, which R
equipped with absolute value happens to be an example of. Recall that |a — b| < r means
that the distance between a and b is less than r (see discussion below Corollary 5.31).
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Definition 8.93. Suppose f is a real function such that 2 € Dom(f). We say that f is
continuous at a if for every ¢ > 0, there exists 6 > 0 such that if x e Dom(f) and |x—a| < 0,
then |f(x) — f(a)| < e. If f is continuous at every point in B C Dom(f), then we say that
f is continuous on B. If f is continuous on its entire domain, we simply say that f is
continuous.

Loosely speaking, a real function f is continuous at the point a € Dom(f) if we can
get f(x) arbitrarily close to f(a) by considering all x € Dom(f) sufficiently close to a.
The value ¢ is indicating how close to f(a) we need to be while the value ¢ is providing
the “window” around a needed to guarantee that all points in the window (and in the
domain) yield outputs within ¢ of f(a). Figure 8.5 illustrates our definition of continuity.
Note that in the figure, the point a is fixed while we need to consider all x € Dom(f) such
that |x —a| < 6. The dashed box in the figure has dimensions 26 by 2¢ and is centered at
the point (4, f(a)). Intuitively, the function is continuous at a since given ¢ > 0, we could
find 6 > 0 so that the graph of the function never exits the top or bottom of the dashed
box.

Figure 8.5: Visual representation of continuity of f at a.

Perhaps you have encountered the phrase “a function is continuous if you can draw its
graph without lifting your pencil.” While this description provides some intuition about
what continuity of a function means, it is neither accurate nor precise enough to capture
the meaning of continuity.

When proving that a function is continuous at a point, the choice of 6 depends on both
the point in question and the value of ¢. An example should be helpful.

Example 8.94. Define f : R — R via f(x) = 3x+ 2. Let’s prove that f is continuous (at
every point in the domain). Let a € R and let ¢ > 0. Choose 6 = ¢/3. We will see in a
moment why this is a good choice for 6. Suppose x € R such that |x —a| < 6. We see that

If(x)—f(a)=13x+2)-(3a+2)|=[3x—3a|=3-|x—a|<3-0=3-¢/3=¢.
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We have shown that f is continuous at a4, and since a was arbitrary, f is continuous.

Problem 8.95. Prove that each of the following real functions is continuous using Defi-
nition 8.93.

(@) f:R — R defined via f(x) = x.
(b) g:R — R defined via g(x) = x + 42.
(¢) h:R — R defined via h(x) = 5x.

The next result tells us that every linear real function is continuous. Do not forget to
handle the case when m = 0 in your proof. Note that the case when m = 0 proves that
every constant function is continuous.

Theorem 8.96. If f : R — R is defined via f(x) = mx+b for m,b € R, then f is continuous.
The second part of the next problem is much harder than you might expect.
Problem 8.97. Define f : R — R via f(x) = x2.
(a) Prove that f is continuous at 0.
(b) Prove that f is continuous at 1.
Problem 8.98. Define f : R — R via f(x) = y/x. Prove that f is continuous at 0.

Problem 8.99. Suppose f is a real function. Write a precise statement for what it means
for f to not be continuous at a € Dom(f).

Problem 8.100. Define f : R — R via

f(x):{l, ifx=0

x, otherwise.

Determine where f is continuous and justify your assertion.
Problem 8.101. Define f : R — R via

f(x):{l’ ifxeQ

0, otherwise.

Determine where f is continuous and justify your assertion.

After completing the next problem, reflect on the statement “a function is continuous
if you can draw its graph without lifting your pencil.”

Problem 8.102. Define f : N — R via f(x) = 1. Notice the domain! Determine where f is
continuous and justify your assertion.
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Theorem 8.103. Suppose f is a real function. Then f is continuous if and only if the
preimage f~!(U) of every open set U is an open set intersected with the domain of f.

The previous characterization of continuity is often referred to as the “open set defi-
nition of continuity,” although for us it is a theorem instead of a definition. This is the
definition used in topology. Another notion of continuity, called “sequential continuity”,
makes use of convergent sequences. All of these characterizations of continuity are equiv-
alent for the real numbers (using the standard definition of an open set). However, there
are contexts in mathematics where the epsilon-delta definition of continuity is undefined
(because there is not a notion of distance in either the domain or codomain) and others
where continuity and sequential continuity are not equivalent.

Since every open set is the union of bounded open intervals (Definition 5.53), the
union of open sets is open (Theorem 5.58), and preimages respect unions (Theorem 8.91),
we can strengthen Theorem 8.103 into a slightly more useful result.

Theorem 8.104. Suppose f is a real function. Then f is continuous if and only if the
preimage f~!(I) of every bounded open interval I is an open set intersected with the
domain of f.

Now that we have two methods for verifying continuity (Definition 8.93 and Theo-
rem 8.103/8.104), you can use either one when approaching the remaining problems in
this section. Sometimes it does not matter which approach you take and other times one
method might be better suited to the task.

Problem 8.105. Define f : R — R via f(x) = x2. Prove that f is continuous.

Problem 8.106. Define f : R\ {0} —» R via f(x) = )1_( Determine where f is continuous and
justify your assertion.

The previous problems once again calls into question the phrase “a function is contin-
uous if you can draw its graph without lifting your pencil.”

Problem 8.107. Find a continuous real function f and an open interval I such that the
preimage f~!(I) is not an open interval.

For the next few problems, if you attempt to construct counterexamples, you may rely
on your previous knowledge about various functions that you encountered in high school
and calculus.

Problem 8.108. Suppose f is a continuous real function. If U is an open set contained in
Dom(f), is the image f(U) always open? If so, prove it. Otherwise, provide a counterex-
ample.

Problem 8.109. Suppose f is a continuous real function. If C is a closed set, is the preim-
age f~1(C) always a closed set? If so, prove it. Otherwise, provide a counterexample.

Problem 8.110. Suppose f is a continuous real function. If [a,b] is a closed interval con-
tained in Dom(f), is the image f([a, b]) always a closed interval? If so, prove it. Otherwise,
provide a counterexample.
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Problem 8.111. Suppose f is a continuous real function. If C is a closed set contained
in Dom(f), is the image f(C) always a closed set? If so, prove it. Otherwise, provide a
counterexample.

Problem 8.112. Suppose f is a continuous real function. If B is bounded set contained
in Dom(f), is the image f(B) always a bounded set? If so, prove it. Otherwise, provide a
counterexample.

Problem 8.113. Suppose f is a continuous real function. If B is a bounded set, is the
preimage f~!(B) always a bounded set? If so, prove it. Otherwise, provide a counterex-
ample.

Problem 8.114. Suppose f is a continuous real function. If K is a compact set, is the
preimage f~!(B) always a compact set? If so, prove it. Otherwise, provide a counterex-
ample.

Problem 8.115. Suppose f is a continuous real function. If C is a connected set contained
in Dom(f), is the image f(C) always connected? If so, prove it. Otherwise, provide a
counterexample.

Problem 8.116. Suppose f is a continuous real function. If C is a connected set, is the
preimage f~1(C) always a connected set? If so, prove it. Otherwise, provide a counterex-
ample.

Perhaps you noticed the absence of one natural question in the previous sequence of
problems. If f is a continuous real function and K is a subset of the domain of f, is the
image f(K) a compact set? It turns out that the answer is “yes”, but proving this fact is
beyond the scope of this book. This theorem is often proved in a real analysis course and
is then used to prove the Extreme Value Theorem, which you may have encountered in
your calculus course.

The next result is a special case of the well-known Intermediate Value Theorem,
which states that if f is a continuous real function whose domain contains the interval
[a,b], then f attains every value between f(a) and f(b) at some point within the interval
[a,b]. To prove the special case, utilize Theorem 5.87 and Problem 8.115 together with a
proof by contradiction.

Theorem 8.117. Suppose f is a real function. If f is continuous on [a, b] such that f(a) <
0< f(b)or f(a)>0> f(b), then there exists r € [4,b] such that f(r) = 0.

If we generalize the previous result, we obtain the Intermediate Value Theorem.

Theorem 8.118 (Intermediate Value Theorem). Suppose f is a real function. If f is con-
tinuous on [4, b] such that f(a) <c < f(b) or f(a)>c > f(b) for some c € R, then there exists
r € [a,b] such that f(r) =c.

Problem 8.119. Is the converse of the Intermediate Value Theorem true? If so, prove it.
Otherwise, provide a counterexample.
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The miracle of the appropriateness of the
language of mathematics for the formulation of
the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be
grateful for it and hope that it will remain valid
in future research and that it will extend, for
better or for worse, to our pleasure, even though
perhaps also to our bafflement, to wide branches
of learning.

Eugene Paul Wigner, theoretical physicist
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