
The impediment to action advances action.
What stands in the way becomes the way.

Marcus Aurelius, Roman emperor

Chapter 7

Relations and Partitions

While there is no agreed upon universal definition of mathematics, one could argue that
mathematics focuses on the study of patterns and relationships. Certain types of relation-
ships occur over and over inmathematics. One way of formalizing the abstract nature and
structure of these relationships is with the notion of relations. In Chapter 8, we will see
that a function is a special type of relation.

7.1 Relations
Recall from Section 3.5 that the Cartesian product of two sets A and B, written A ⇥ B, is
the set of all ordered pairs (a,b), where a 2 A and b 2 B. That is, A⇥B = {(a,b) | a 2 A,b 2 B}.

Definition 7.1. Let A and B be sets. A relation R from A to B is a subset of A ⇥B. If R is
a relation from A to B and (a,b) 2 R, then we say that a is related to b and we may write
aRb in place of (a,b) 2 R. If R is a relation from A to the same set A, then we say that R
is a relation on A.

Example 7.2. The set N⇥R from Problem 3.55 is an example of a relation on R since N⇥R
is a subset of R⇥R.

It is important to notice that the order in which we write things for relations matters.
In particular, if R is a relation from A to B and aRb, then it may or may not be the case
that bRa.

Example 7.3. If A = {a,b,c,d, e} and B = {1,2,3,4}, then the set of ordered pairs

R = {(a,1), (a,2), (a,4), (c,2), (d,2), (e,2), (e,4)}

is an example of a relation from A to B. In this case, we could write (c,2) 2 R or cR2. We
could also say that a is related to 1, 2, and 4.

Example 7.4. As in the previous example, let A = {a,b,c,d, e}. One possible relation on A

is given by

R = {(a,a), (a,b), (a,c), (b,b), (b,a), (b,c), (c,d), (c, e), (d,d), (d,a), (d,c), (e,a)}.
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Example 7.5. Consider the set of accounts A on the social media platform Twitter. On
Twitter, each account has a set of accounts that they follow. We can model this situation
mathematically using a relation on A. Define T on A via xTy if x follows y on Twitter. As
a set

T = {(x,y) 2 A⇥A | x follows y on Twitter}.

Example 7.6. You are already familiar with many relations. For example, =, , and < are
each examples of relations on the real numbers. We could say that (3,⇡) is in the relation
 and the relation < since 3  ⇡ and 3 < ⇡. However, (3,⇡) is not in the relation = since
3 , ⇡. Also, notice that order matters for the relations  and < yet does not for =. For
example, (�

p
2,4) is in the relation  while (4,�

p
2) is not.

Example 7.7. Define the relation S from {�1,1} to Z via 1Sx if x is even and �1Sx if x is
odd. That is, 1 is related to all even integers and �1 is related to all odd integers.

Example 7.8. Let A be any set. Since ; ✓ A⇥A, the empty set forms a relation on A. This
relation is called the empty relation on A.

Relations can be represented using digraphs. A digraph (short for directed graph) is a
discrete graph that consists of a set of vertices connected by edges, where the edges have a
direction associated with them. If R is a relation from A to B, then the elements of A and B

are the vertices of the digraph and there is a directed edge from a 2 A to b 2 B if (a,b) is in
the relation R (i.e., aRb). We can visually represent digraphs by using dots to represent the
vertices and arrows to represent directed edges. We will not make a distinction between
a digraph and its visual representation. Utilizing a digraph to represent a relation may
be impractical if there is a large number of vertices or directed edges.

Example 7.9. Consider the relation given in Example 7.3. The corresponding digraph is
depicted in Figure 7.1. Notice that we have placed the vertices corresponding to elements
of A on the left and the elements of B on the right. This is standard practice, but what
really matters is the edge connections not how the vertices are placed on the page.

Problem 7.10. Let A = {1,2,3,4,5,6} and B = {1,2,3,4} and define D from A to B via
(a,b) 2D if a� b is divisible by 2. List the ordered pairs in D and draw the corresponding
digraph.

If R is a relation on A (i.e., a relation from A to A), then we can simplify the structure
of the digraph by only utilizing one copy of A for the vertices. In this case, we may have
directed edges that point from a vertex to itself. When drawing digraphs for a relation on
a set, we will default to this simplified digraph (like the one depicted in Figure 7.2(b)).

Example 7.11. Figure 7.2(a) represents the relation of Example 7.4 as a digraph from A

to A while the digraph in Figure 7.2(b) provides a streamlined representation of the same
relation that uses the elements in A only once instead of twice.

Problem 7.12. Let A = {1,2,3,4,5,6} and define | on A via x|y if x divides y. List the
ordered pairs in | and draw the corresponding digraph.
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Figure 7.1: Digraph for a relation from A = {a,b,c,d, e} to B = {1,2,3,4}.
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Figure 7.2: Two variations of digraphs for a relation on A = {a,b,c,d, e}.

Problem 7.13. Let A = {a,b,c,d} and define R on A via

R = {(a,a), (a,b), (a,c), (b,b), (b,a), (b,c), (c, c), (c,a), (c,b), (d,d)}.

(a) Draw the digraph for R.

(b) Draw the digraph for the empty relation on A.

We can also visually represent a relation by plotting the points in the relation. In
particular, if R is a relation from A to B and aRb, we can plot all points (a,b) that satisfy
aRb in two dimensions, where we interpret the set A to be the horizontal axis and B to be
the vertical axis. We will refer to this visual representation of a relation as the graph of
the relation.
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Example 7.14. When we write x
2 + y

2 = 1, we are implicitly defining a relation. In
particular, the relation is the set of ordered pairs (x,y) satisfying x

2 + y
2 = 1, namely

{(x,y) 2 R2 | x2 + y
2 = 1}. The graph of this relation in R2 is the unit circle centered at the

origin in the plane as shown in Figure 7.3.

(1,0)

(x,y)

Figure 7.3: Graph of the relation determined by x
2 + y

2 = 1.

Problem 7.15. For each of the following, draw a portion of the graph that represents the
relation as a subset of R2.

(a) {(x,y) 2 R2 | y = x
2}

(b) {(x,y) 2 Z2 | y = x
2}

(c) {(x,y) 2 R2 | y2 = x}

(d) {(x,y) 2 N⇥R | y2 = x}

Problem 7.16. Draw a portion of the graph that represents the relation  on R.

For a relation on a set, it is natural to consider the collection of elements that a given
element is related to. For example, a user’s “Following List” on Twitter is the set of
accounts on Twitter that the user is following.

Definition 7.17. Let R be a relation on a set A. For each a 2 A, we define the set of
relatives of a with respect to R via

rel(a,R)B {b 2 A | aRb} .

We also define the collection of the sets of relatives with respect to R by

Rel(R)B {rel(a) | a 2 A} .
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If R is clear from the context, we will usually write rel(a) in place of rel(a,R). In terms
of digraphs, rel(a) is the collection of vertices that have a directed edge pointing towards
them from the vertex labeled by a. In graph theory, this collection of vertices is called
the out neighborhood of a and each such vertex is called an out neighbor. Notice that
Rel(R) is a set of sets. In particular, an element in Rel(R) is a subset of A—equivalently,
an element of P (A).
Example 7.18. Consider the relation given in Example 7.4. By inspecting the ordered
pairs in R or by looking at the digraph in Figure 7.2(b), we see that

rel(a) = {a,b,c}, rel(b) = {a,b,c}, rel(c) = {d,e}, rel(d) = {a,c,d}, rel(e) = {a},

so that Rel(R) = {{a,b,c}, {d,e}, {a,c,d}, {a}}.
Problem 7.19. Consider the relation given in Problem 7.13(a). Find Rel(R) by determin-
ing rel(x) for each x 2 A.
Problem 7.20. Describe the collection of the sets of relatives with respect to the empty
relation from Problem 7.13(b).

Problem 7.21. Let P denote the set of all people with accounts on Facebook and define
the relation F on P via xFy if x is friends with y. Describe rel(Maria), where Maria is the
name of a specific Facebook user. What is Rel(F)?

Problem 7.22. Define the relation ⌘5 on Z via a ⌘5 b if a� b is divisible by 5. Find rel(1),
rel(2), and rel(6). How many distinct sets are in Rel(⌘5)? List the distinct sets in Rel(⌘5).
Problem 7.23. Consider the relation  on R. If x 2 R, what is rel(x)?

Problem 7.24. Suppose R is a relation on A = {1,2,3,4,5} such that rel(1) = {1,3,4},
rel(2) = {4}, rel(3) = {3,4,5}, rel(4) = {1,2}, and rel(5) = ;. List the ordered pairs in R

and draw the corresponding digraph.

We will now examine three important properties that a relation on a set may or may
not possess.

Definition 7.25. Let R be a relation on a set A.

(a) The relation R is reflexive if for all a 2 A, aRa.

(b) The relation R is symmetric if for all a,b 2 A, if aRb, then bRa.

(c) The relation R is transitive if for all a,b,c 2 A, if aRb and bRc, then aRc.

Example 7.26. Here are a few examples that illustrate the concepts in the previous defi-
nition.

(a) The relation = on R is reflexive, symmetric, and transitive.

(b) The relation  is reflexive and transitive on R, but not symmetric. However, notice
that < is transitive on R, but neither symmetric nor reflexive.

86



CHAPTER 7. RELATIONS AND PARTITIONS

(c) If S is a set, then ✓ on P (S) is reflexive and transitive, but not symmetric.

Problem 7.27. Determine whether the relations given in each of the following is reflexive,
symmetric, or transitive.

(a) Example 7.4

(b) Problem 7.13

Problem 7.28. Suppose R is a relation on a set A.

(a) Explain what it means for R to not be reflexive.

(b) Explain what it means for R to not be symmetric.

(c) Explain what it means for R to not be transitive.

Problem 7.29. Let A = {a,b,c,d, e}.
(a) Define a relation R on A that is reflexive but not symmetric nor transitive.

(b) Define a relation S on A that is symmetric but not reflexive nor transitive.

(c) Define a relation T on A that is transitive but not reflexive nor symmetric.

Problem 7.30. Given a relation R on a finite set A, describe what each of reflexive, sym-
metric, and transitive look like in terms of a digraph. That is, draw pictures that represent
each of reflexive, symmetric, and transitive. One thing to keep in mind is that the ele-
ments used in the definitions of symmetric and transitive do not have to be distinct. So,
you might need to consider multiple cases.

Below, we provide skeleton proofs for proving that a relation is reflexive, symmetric,
or transitive. Notice that the skeleton proof for proving that a relation is reflexive is a spe-
cial case of Skeleton Proof 2.81. Similarly, the skeleton proofs involving symmetric and
transitive are both special cases of Skeleton Proof 2.82. It is important to point out that
every relation on the empty set is vacuously reflexive, symmetric, and transitive. In the
skeleton proofs below, we are implicitly assuming that the set in question is nonempty.
In some circumstances, it may be necessary to mention the possibility of the empty set.

Skeleton Proof 7.31 (Proof that a relation is reflexive). Here is the general structure for
proving that a relation is reflexive.

Proof. Assume R is a relation on A defined by (or satisfying). . . [Use the given defini-
tion (or describe the given property) of R]. Let a 2 A.

. . . [Use the definition (or property) of R to verify that aRa] . . .

Therefore, the relation R is reflexive on A.

Skeleton Proof 7.32 (Proof that a relation is symmetric). Here is the general structure for
proving that a relation is symmetric.
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Proof. Assume R is a relation on A defined by (or satisfying). . . [Use the given defini-
tion (or describe the given property) of R]. Let a,b 2 A and suppose aRb.

. . . [Use assumption that aRb with definition (or property)
of R to verify that bRa] . . .

Therefore, the relation R is symmetric on A.

Skeleton Proof 7.33 (Proof that a relation is transitive). Here is the general structure for
proving that a relation is transitive.

Proof. Assume R is a relation on A defined by (or satisfying). . . [Use the given defini-
tion (or describe the given property) of R]. Let a,b,c 2 A and suppose aRb and bRc.

. . . [Use assumption that aRb and bRc with definition
(or property) of R to verify that aRc] . . .

Therefore, the relation R is transitive on A.

Problem 7.34. Determine whether each of the following relations is reflexive, symmetric,
or transitive. In each case, you should either provide a specific counterexample or a proof.

(a) Consider the relation T described in Example 7.5.

(b) Consider the relation F described in Problem 7.21.

(c) Consider the relation ⌘5 described in Problem 7.22.

(d) Let P be the set of all people and define H via xHy if x and y have the same height.

(e) Let P be the set of all people and define T via xTy if x is taller than y.

(f) Consider the relation “divides” on N.

(g) Let L be the set of lines and define || via l1||l2 if l1 is parallel to l2.

(h) Let C[0,1] be the set of continuous functions on [0,1]. Define f ⇠ g if
Z 1

0
|f (x)| dx =

Z 1

0
|g(x)| dx.

(i) Define R on N via nRm if n+m is even.

(j) Define D on R via (x,y) 2D if x = 2y.

(k) Define F on Z ⇥ (Z \ {0}) via (a,b)F(c,d) if ad = bc. Do you recognize this relation?
Think about fractions.

(l) Define ⇠ on R2 via (x1, y1) ⇠ (x2, y2) if x21 + y
2
1 = x

2
2 + y

2
2 .
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(m) Define S on R via xSy if bxc = byc, where bxc is the greatest integer less than or equal
to x (e.g., b⇡c = 3, b�1.5c = �2, and b4c = 4).

(n) Define C on R via xCy if |x � y| < 1.

Most of what we believe, we believe because it
was told to us by someone we trusted. What I
would like to suggest, however, is that if we rely
too much on that kind of education, we could
find in the end that we have never really learned
anything.

Paul Wallace, physicist & theologian

7.2 Equivalence Relations
Aswe have seen in the previous section, the notions of reflexive, symmetric, and transitive
are independent of each other. That is, a relation may have some combination of these
properties, possibly none of them and possibly all of them. However, we have a special
name for when a relation satisfies all three properties.

Definition 7.35. Let ⇠ be a relation on a set A. Then ⇠ is called an equivalence relation
on A if ⇠ is reflexive, symmetric, and transitive.

The symbol “⇠” is usually pronounced as “twiddle” or “tilde” and the phrase “a ⇠ b”
could be read as “a is related to b” or “a twiddles b”.

Problem 7.36. Let A = {1,2,3,4,5,6} and define

R = {(1,1), (1,6), (2,2), (2,3), (2,4), (3,3), (3,2), (3,4), (4,4), (4,2), (4,3), (5,5), (6,6), (6,1)}.

Using R, complete each of the following.

(a) Draw the digraph for R.

(b) Determine whether R is an equivalence relation on A.

(c) Find Rel(R) by determining rel(x) for each x 2 A.
Problem 7.37. Let A = {a,b,c,d, e}.
(a) Make up an equivalence relation ⇠ on A by drawing a digraph such that a is not

related to b and c is not related to b.

(b) Using your digraph, find Rel(⇠) by determining rel(x) for each x 2 A.
Problem 7.38. Given a finite set A and an equivalence relation ⇠ on A, describe what the
corresponding digraph would have to look like.
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Problem 7.39. Determine which relations given in Problem 7.34 are equivalence rela-
tions.

Problem 7.40. Let T be the set of all triangles and define ⇠ on T via T1 ⇠ T2 if T1 is
similar to T2. Determine whether ⇠ is an equivalence relation on T .

Problem 7.41. If possible, construct an equivalence relation on the empty set. If this is
not possible, explain why.

Theorem 7.42. Suppose ⇠ is an equivalence relation on a set A and let a,b 2 A. Then
rel(a) = rel(b) if and only if a ⇠ b.

Theorem 7.43. Suppose ⇠ is an equivalence relation on a set A. Then

(a)
[

a2A
rel(a) = A, and

(b) For all a,b 2 A, either rel(a) = rel(b) or rel(a)\ rel(b) = ;.

In light of Theorem 7.43, we have the following definition.

Definition 7.44. If ⇠ is an equivalence relation on a set A, then for each a 2 A, we refer to
rel(a) as the equivalence class of a.

When ⇠ is an equivalence relation on a set A, it is common to write each equivalence
class rel(a) as [a] (or sometimes a). The element a inside the square brackets is called the
representative of the equivalence class [a]. Theorem 7.42 implies that an equivalence
class can be represented by any element of the equivalence class. For example, in Prob-
lem 7.36, we have [1] = [6] since 1 and 6 are in the same equivalence class. The collection
of equivalence classes Rel(⇠) is often denoted by A/⇠ , which is read as “A modulo ⇠” or
“A mod ⇠”. The collection A/⇠ is sometimes referred to as the quotient of A by ⇠.

Example 7.45. Let P denote the residents of a particular town and define ⇠ on P via
a ⇠ b if a and b have the same last name. It is easily seen that this relation is reflexive,
symmetric, and transitive, and hence ⇠ is an equivalence relation on P. The equivalence
classes correspond to collections of individuals with the same last name. For example,
Maria Garcia, Anthony Garcia, and Ariana Garcia all belong to the same equivalence
class. Any Garcia can be used as a representative for the corresponding equivalence class,
so we can denote it as [Maria Garcia], for example. The collection P/⇠ consists of the
various sets of people with the same last name. In particular, [Maria Garcia] 2 P/⇠.

Example 7.46. The five distinct sets of relatives that you identified in Problem 7.22 are
the equivalence classes for ⌘5 on Z. These equivalence classes are often called the con-
gruence classes modulo 5.

The upshot of Theorem 7.43 is that given an equivalence relation, every element lives
in exactly one equivalence class. In the next section, we will see that we can run this
in reverse. That is, if we separate out the elements of a set so that every element is an
element of exactly one subset, then this determines an equivalence relation.
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Problem 7.47. If ⇠ is an equivalence relation on a finite set A, describe A/⇠ in terms of
the digraph corresponding to ⇠.

Problem 7.48. For each of the equivalence relations you identified in Problem 7.39, suc-
cinctly describe the corresponding equivalence classes.

Problem 7.49. Suppose R and S are both equivalence relations on a set A. Is R \ S an
equivalence relation on A? If so, prove it. Otherwise, provide a counterexample.

Problem 7.50. Suppose R and S are both equivalence relations on a set A. Is R [ S an
equivalence relation on A? If so, prove it. Otherwise, provide a counterexample.

Mathematics has beauty and romance. It’s not a
boring place to be, the mathematical world. It’s
an extraordinary place; it’s worth spending time
there.

Marcus du Sautoy, mathematician

7.3 Partitions
Theorems 7.42 and 7.43 imply that if ⇠ is an equivalence relation on a setA, then ⇠ breaks
A up into pairwise disjoint “chunks”, where each chunk is some [a] for a 2 A. As you have
probably already noticed, equivalence relations are intimately related to the following
concept.

Definition 7.51. A collection ⌦ of subsets of a set A is said to be a partition of A if the
elements of ⌦ satisfy:

(a) Each X 2⌦ is nonempty,

(b) For all X,Y 2⌦, X \Y = ; when X , Y , and

(c)
[

X2⌦
X = A.

That is, the elements of ⌦ are pairwise disjoint nonempty sets and their union is all of A.
Each X 2⌦ is called a block of the partition.

Example 7.52. Consider the equivalence relation ⇠ on the set P described in Exam-
ple 7.45. Recall that the equivalence classes correspond to collections of individuals
with the same last name. Since each equivalence class is nonempty and each resident
of the town belongs to exactly one equivalence class, the collection of equivalence classes
forms a partition of P. That is, P/⇠ is a partition of P, where the blocks of the partition
correspond to sets of residents with the same last name.
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Example 7.53. Each of the following is an example of a partition of the set given in paren-
theses.

(a) Democrat, Republican, Independent, Green Party, Libertarian, etc. (set of registered
voters)

(b) Freshman, sophomore, junior, senior (set of high school students)

(c) Evens, odds (set of integers)

(d) Rationals, irrationals (set of real numbers)

Example 7.54. Let A = {a,b,c,d, e, f } and ⌦ = {{a}, {b,c,d}, {e, f }}. Since the elements of
⌦ are pairwise disjoint nonempty subsets of A such that their union is all of A, ⌦ is a
partition of A consisting of three blocks.

Problem 7.55. Consider the set A from Example 7.54.

(a) Find a partition of A consisting of four blocks.

(b) Find a collection of subsets of A that does not form a partition. See how many ways
you can prevent your collection from being a partition.

Problem 7.56. For each of the following, find a partition of Z with the given properties.

(a) A partition of Z that consists of finitely many blocks, where each of the blocks is
infinite.

(b) A partition of Z that consists of infinitely many blocks, where each of the blocks is
finite.

(c) A partition of Z that consists of infinitely many blocks, where each of the blocks is
infinite.

Problem 7.57. For each relation in Problem 7.34, determine whether the corresponding
collection of the sets of relatives forms a partition of the given set.

Problem 7.58. Can we partition the empty set? If so, describe a partition. If not, explain
why.

The next theorem spells out half of the close connection between partitions and equiv-
alence relations. Theorem 7.73 yields the other half.

Theorem 7.59. If ⇠ is an equivalence relation on a nonempty set A, then A/⇠ forms a
partition of A.

Problem 7.60. In the previous theorem, why did we require A to be nonempty?

Problem 7.61. Consider the equivalence relation

⇠ = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6), (5,6), (6,5), (4,6), (6,4)}

on the set A = {1,2,3,4,5,6}. Find the partition determined by Rel(⇠).

92



CHAPTER 7. RELATIONS AND PARTITIONS

It turns out that we can reverse the situation, as well. That is, given a partition, we can
form an equivalence relation such that the equivalence classes correspond to the blocks
of the partition. Before proving this, we need a definition.

Definition 7.62. Let A be a set and ⌦ any collection of subsets of A (not necessarily a
partition). Define the relation R⌦ on A via aR⌦b if there exists X 2⌦ that contains both
a and b. This relation is called the relation on A associated to⌦.

In other words, two elements are related exactly when they are in the same subset.

Problem 7.63. Let A = {a,b,c,d, e, f } and let ⌦ = {{a,c}, {b,c}, {d, f }}. List the ordered pairs
in R⌦ and draw the corresponding digraph.

Problem 7.64. Let A and⌦ be as in Example 7.54. List the ordered pairs in R⌦ and draw
the corresponding digraph.

Problem 7.65. Consider Problem 7.24. Find the relation on A associated to Rel(⇠) and
compare with what you obtained for R in Problem 7.24.

Problem 7.66. Give an example of a set A and a collection ⌦ from P (A) such that the
relation R⌦ is not reflexive.

Problem 7.67. Let A = {1,2,3,4,5,6} and ⌦ = {{1,3,4}, {2,4}, {3,4}, {6}}.

(a) Is ⌦ a partition of A?

(b) Find R⌦ by listing ordered pairs or drawing a digraph.

(c) Is R⌦ an equivalence relation?

(d) Find Rel(R⌦) (i.e., the collection of subsets of A determined by R⌦). How are⌦ and
Rel(R⌦) related?

Theorem 7.68. If ⌦ is a collection of subsets of a nonempty set A (not necessarily a par-
tition) such that [

X2⌦
X = A,

then R⌦ is reflexive.

Problem 7.69. Is it necessary to require A to be nonempty in Theorem 7.68?

Theorem 7.70. If ⌦ is a collection of subsets of a set A (not necessarily a partition), then
R⌦ is symmetric.

Theorem 7.71. If ⌦ is a collection of subsets of a set A (not necessarily a partition) such
that the elements of ⌦ are pairwise disjoint, then R⌦ is transitive.

Problem 7.72. Why didn’t we require A to be nonempty in Theorems 7.70 and 7.71?
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Recall that Theorem 7.59 says that the equivalence classes for a relation on a nonempty
set A determines a partition of A. The following theorem tells us that every partition of a
set yields an equivalence relation where the equivalence classes correspond to the blocks
of the partition. This result is a consequence of Theorems 7.68, 7.70, and 7.71.

Theorem 7.73. If ⌦ is a partition of a set A, then R⌦ is an equivalence relation.

Together, Theorems 7.59 and 7.73 tell us that equivalence relations and partitions are
two di↵erent ways of viewing the same thing.

Corollary 7.74. If R is a relation on a nonempty set A such that the collection of the set
of relatives with respect to R is a partition of A, then R is an equivalence relation.

Problem 7.75. Let A = {�,4,N,⇤,⌅,F,,,/}. Make up a partition ⌦ on A and then draw
the digraph corresponding to R⌦ .

In the broad light of day mathematicians check
their equations and their proofs, leaving no
stone unturned in their search for rigour. But, at
night, under the full moon, they dream, they
float among the stars and wonder at the miracle
of the heavens. They are inspired. Without
dreams there is no art, no mathematics, no life.

Michael Atiyah, mathematician

7.4 Modular Arithmetic
In this section, we look at a particular family of equivalence relations on the integers and
explore the way in which arithmetic interacts with them.

Definition 7.76. For each n 2 N, define nZ to be the set of all integers that are divisible
by n. In set-builder notation, we have

nZB {m 2 Z |m = nk for some k 2 Z} .

For example, 5Z = {. . . ,�10,�5,0,5,10, . . .} and 2Z is the set of even integers.

Problem 7.77. Consider the sets 3Z, 5Z, 15Z, and 20Z.

(a) List at least five elements in each of the above sets.

(b) Notice that 3Z\5Z = nZ for some n 2 N. What is n? Describe 15Z\20Z in a similar
way.

(c) Draw a Venn diagram illustrating how the sets 3Z, 5Z, and 15Z intersect.
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(d) Draw a Venn diagram illustrating how the sets 5Z, 15Z, and 20Z intersect.

Theorem 7.78. Let n 2 N. If a,b 2 nZ, then �a, a+ b, and ab are also in nZ.

Definition 7.79. For each n 2 N, define the relation ⌘n on Z via a ⌘n b if a � b 2 nZ. We
read a ⌘n b as “a is congruent to b modulo n.”

Note that a� b 2 nZ if and only if n divides a� b, which implies that a ⌘n b if and only
if n divides a� b.
Example 7.80. We encountered ⌘5 in Problem 7.22 and discovered that there were five
distinct sets of relatives. In particular, we have

rel(0) = {. . . ,�10,�5,0,5,10, . . .}
rel(1) = {. . . ,�9,�4,1,6,11, . . .}
rel(2) = {. . . ,�8,�3,2,7,12, . . .}
rel(3) = {. . . ,�7,�2,3,8,13, . . .}
rel(4) = {. . . ,�6,�1,4,9,14, . . .}.

Notice that this collection forms a partition of Z. By Corollary 7.74, the relation ⌘5 must
be an equivalence relation.

The previous example generalizes as expected. You can prove the following theorem
by either proving that ⌘n is reflexive, symmetric, and transitive or by utilizing Corol-
lary 7.74.

Theorem 7.81. For n 2 N, the relation ⌘n is an equivalence relation on Z.

We have have special notation and terminology for the equivalence classes that corre-
spond to ⌘n.

Definition 7.82. For n 2 N, let [a]n denote the equivalence class of a with respect to ⌘n
(see Definitions 7.17 and 7.44). The equivalence class [a]n is called the congruence (or
residue) class of a modulo n. The collection of all equivalence classes determined by ⌘n
is denoted Z/nZ , which is read “Z modulo nZ”.

Example 7.83. Let’s compute [2]7. Tracing back through the definitions, we see that

m 2 [2]7()m ⌘7 2
()m� 2 2 7Z
()m� 2 = 7k for some k 2 Z
()m = 7k +2 for some k 2 Z.

Since the multiples of 7 are 7Z = {. . . ,�14,�7,0,7,14, . . .}, we can find [2]7 by adding 2 to
each element of 7Z to get [2]7 = {. . . ,�12,�5,2,9,16, . . .}.
Problem 7.84. For each of the following congruence classes, find five elements in the set
such that at least one is greater than 70 and one is less than 70.
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(a) [4]7

(b) [�3]7
(c) [7]7

Problem 7.85. Describe [0]3, [1]3, [2]3, [4]3, and [�2]3 as lists of elements as in Exam-
ple 7.83. How many distinct congruence classes are in Z/3Z? Theorem 7.43 might be
helpful.

Consider using Theorem 7.42 to prove the next theorem.

Theorem 7.86. For n 2 N and a,b 2 Z, [a]n = [b]n if and only if n divides a� b.

Corollary 7.87. For n 2 N and a 2 Z, [a]n = [0]n if and only if n divides a.

The next result provides a useful characterization for when two congruence classes
are equal. The Division Algorithm will be useful when proving this theorem.

Theorem 7.88. For n 2 N and a,b 2 Z, [a]n = [b]n if and only if a and b have the same
remainder when divided by n.

When proving Part (a) of the next theorem, make use of Theorem 7.86. For Part (b),
note that a1b1 � a2b2 = a1b1 � a2b1 + a2b1 � a2b2.

Theorem 7.89. Let n 2 N and let a1, a2, b1, b2 2 Z. If [a1]n = [a2]n and [b1]n = [b2]n, then

(a) [a1 + b1]n = [a2 + b2]n, and

(b) [a1 · b1]n = [a2 · b2]n.

The previous theorem allows us to define addition and multiplication in Z/nZ.

Definition 7.90. Let n 2 N. We define the sum and product of congruence classes in Z/nZ
via

[a]n + [b]n B [a+ b]n and [a]n · [b]n B [a · b]n.

Example 7.91. By Definition 7.90, [2]7+[6]7 = [2+6]7 = [8]7. By Theorem 7.86, [8]7 = [1]7,
and so [2]7 + [6]7 = [1]7. Similarly, [2]7 · [6]7 = [2 · 6]7 = [12]7 = [5]7.

Addition and multiplication for Z/nZ has many familiar—and some not so familiar—
properties. For example, addition and multiplication of congruence classes are both asso-
ciative and commutative. However, it is possible for [a]n · [b]n = [0]n even when [a]n , [0]n
and [b]n , [0]n.

Theorem 7.92. If n 2 N, then addition in Z/nZ is commutative and associative. That is,
for all [a]n, [b]n, [c]n 2 Z/nZ, we have

(a) [a]n + [b]n = [b]n + [a]n, and

(b) ([a]n + [b]n) + [c]n = [a]n + ([b]n + [c]n).
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Theorem 7.93. If n 2 N, then multiplication in Z/nZ is commutative and associative. That
is, for all [a]n, [b]n, [c]n 2 Z/nZ, we have

(a) [a]n · [b]n = [b]n · [a]n, and

(b) ([a]n · [b]n) · [c]n = [a]n · ([b]n · [c]n).

One consequence of Theorems 7.92(b) and 7.93(b) is that parentheses are not needed
when adding or multiplying congruence classes. The next theorem follows from Defini-
tion 7.90 together with Theorems 7.92(b) and 7.93(b) and induction on k.

Theorem 7.94. Let n 2 N. For all k 2 N, if [a1]n, [a2]n, . . . , [ak]n 2 Z/nZ, then

(a) [a1]n + [a2]n + · · ·+ [ak]n = [a1 + a2 + · · ·+ ak]n, and

(b) [a1]n[a2]n · · · [ak]n = [a1a2 · · ·ak]n.

The next result is a special case of Theorem 7.94(b).

Corollary 7.95. Let n 2 N. If a 2 Z and k 2 N, then ([a]n)k = [ak]n

Example 7.96. Let’s compute [8179]7. We see that

[8179]7 = ([8]7)179 (Corollary 7.95)

= ([1]7)179 (Theorem 7.86)

= [1179]7 (Corollary 7.95)
= [1]7.

For Part (a) in the next problem, use the fact that [6]7 = [�1]7. For Part (b), use the fact
that [23]7 = [1]7.

Problem 7.97. For each of the following, find a number a with 0  a  6 such that the
given quantity is equal to [a]7.

(a) [6179]7

(b) [2300]7

(c) [2301 + 5]7

Problem 7.98. Find a and b such that [a]6 · [b]6 = [0]6 but [a]6 , [0]6 and [b]6 , [0]6.

Theorem 7.99. If n 2 N such that n is not prime, then there exists [a]n, [b]n 2 Z/nZ such
that [a]n · [b]n = [0]n while [a]n , [0]n and [b]n , [0]n.

Problem 7.100. Notice that 2x = 1 has no solution in Z. Show that [2]7[x]7 = [1]7 does
have a solution with x in Z. What about [14]7[x]7 = [1]7?

Make use of Theorem 7.94, Corollary 7.95, and Theorem 7.86 to prove the following
theorem.
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Theorem 7.101. If m 2 N such that

m = ak10k + ak�110k�1 + · · ·+ a110+ a0,

where ak,ak�1, . . . , a1, a0 2 {0,1, . . . ,9} (i.e., ak,ak�1, . . . , a1, a0 are the digits of m), then

[m]3 = [ak + ak�1 + · · ·+ a1 + a0]3.

You likely recognize the next result. Its proof follows quickly from Corollary 7.87
together with the previous theorem.

Theorem 7.102. An integer is divisible by 3 if and only if the sum of its digits is divisible
by 3.

Let’s revisit Theorem 4.21, which we originally proved by induction.

Problem 7.103. Use Corollary 7.87 to prove that for all integers n � 0, 32n � 1 is divisible
by 8. You will need to handle the case involving n = 0 separately.

We close this chapter with a fun problem.

Problem 7.104. Prove or provide a counterexample: No integer n exists such that 4n+ 3
is a perfect square.

Without change something sleeps inside us, and
seldom awakens. The sleeper must awaken.

Dune by Frank Herbert
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