
Chapter 5

Induction

In this chapter, we introduce mathematical induction, which is a proof technique that is
useful for proving statements of the form (8n 2 N)P(n), or more generally (8n 2 Z)(n �
a =) P(n)), where P(n) is some predicate and a 2 Z.

5.1 Introduction to Induction

Consider the claims:

(a) For all n 2 N, 1 + 2+3+ · · ·+n =
n(n+1)

2
.

(b) For all n 2 N, n2 +n+41 is prime.

Let’s take a look at potential proofs.

“Proof” of (a). If n = 1, then 1 = 1(1+1)
2 . If n = 2, then 1 + 2 = 3 = 2(2+1)

2 . If n = 3, then
1+2+3 = 6 = 3(3+1)

2 , and so on.

“Proof” of (b). If n = 1, then n2 +n+41 = 43, which is prime. If n = 2, then n2 +n+41 = 47,
which is prime. If n = 3, then n2 +n+41 = 53, which is prime, and so on.

Are these actual proofs? NO! In fact, the second claim isn’t even true. If n = 41, then
n2 + n + 41 = 412 + 41 + 41 = 41(41 + 1 + 1), which is not prime since it has 41 as a factor.
It turns out that the first claim is true, but what we wrote cannot be a proof since the
same type of reasoning when applied to the second claim seems to prove something that
isn’t actually true. We need a rigorous way of capturing “and so on” and a way to verify
whether it really is “and so on.”

Axiom 5.1 (Axiom of Induction). Let S ✓ N such that both

(i) 1 2 S , and
(ii) if k 2 S , then k +1 2 S .

Then S = N.
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Recall that an axiom is a basic mathematical assumption. That is, we are assuming
that the Axiom of Induction is true, which I’m hoping that you can agree is a pretty
reasonable assumption. We can think of the first hypothesis as saying that we have a first
rung of a ladder. The second hypothesis says that if we have any arbitrary rung of the
ladder, then we can always get to the next rung. Taken together, this says that we can get
from the first rung to the second, from the second to the third, and in general, from any
kth rung to the (k +1)st rung.

Theorem 5.2 (Principle of Mathematical Induction). Let P(1),P(2),P(3), . . . be a sequence
of statements, one for each natural number.1 Assume

(i) P(1) is true, and

(ii) if P(k) is true, then P(k +1) is true.

Then P(n) is true for all n 2 N.2
The Principal of Mathematical Induction (PMI) provides us with a process for proving

statements of the form: “For all n 2 N, P(n),” where P(n) is some predicate involving n.
Hypothesis (i) above is called the base step while (ii) is called the inductive step.

You should not confuse mathematical induction with inductive reasoning associated
with the natural sciences. Inductive reasoning is a scientific method whereby one in-
duces general principles from observations. On the other hand, mathematical induction
is a deductive form of reasoning used to establish the validity of a proposition.

Skeleton Proof 5.3 (Proof of (8n 2 N)P(n) by Induction). Here is the general structure for
a proof by induction.

Proof. We proceed by induction.

(i) Base step: [Verify that P(1) is true. This often, but not always, amounts to plug-
ging n = 1 into two sides of some claimed equation and verifying that both sides
are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all k 2 N, if P(k) is true, then P(k +1)
is true.”] Let k 2 N and assume that P(k) is true. [Do something to derive that
P(k +1) is true.] Therefore, P(k +1) is true.

Thus, by the PMI, P(n) is true for all n 2 N.
Prove the next few theorems using induction.

Theorem 5.4. For all n 2 N,
nX

i=1

i =
n(n+1)

2
.3

1Think of P(n) as a predicate, where P(1) is the statement that corresponds to substituting in the value 1
for n.

2Hint: Let S = {k 2 N | P(k) is true} and use the Axiom of Induction. The set S is sometimes called the truth
set. Your job is to show that the truth set is all of N.

3Recall that
nX

i=1

i = 1+2+3+ · · ·+n, by definition. Also, this theorem should look familiar from calculus.
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Theorem 5.5. For all n 2 N, 3 divides 4n � 1.
Theorem 5.6. For all n 2 N, 6 divides n3 �n.
Theorem 5.7. Let p1,p2, . . . ,pn be n distinct points arranged on a circle. Then the number
of line segments joining all pairs of points is n2�n

2 .

Problem 5.8. A special chessboard is 2 squares wide and n squares long. Using n domi-
noes that are 1 square by 2 squares, there aremanyways to perfectly cover this chessboard
with no overlap. How many? Prove your answer.

Problem 5.9. Another chessboard is 2n squares wide and 2n squares long. However, one
of the squares has been cut out, but you don’t know which one! You have a bunch of
L-shapes made up of 3 squares. Prove that you can perfectly cover this chessboard with
the L-shapes (with no overlap) for any n 2 N. Figure 5.1 depicts one possible covering for
the case involving n = 2.

Figure 5.1: One possible covering for the case involving n = 2 for Problem 5.9.

5.2 More on Induction

In the previous section, we discussed proving statements of the form (8n 2 N)P(n). Math-
ematical induction can actually be used to prove a broader family of results; namely,
those of the form

(8n 2 Z)(n � a =) P(n))

for any value a 2 Z. Theorem 5.2 handles the special case when a = 1. The ladder analogy
from the previous section holds for this more general situation, too.

Theorem 5.10 (Principle of Mathematical Induction). Let P(a),P(a + 1),P(a + 2), . . . be a
sequence of statements, one for each integer greater than or equal to a. Assume that

(i) P(a) is true, and
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(ii) if P(k) is true, then P(k +1) is true.

Then P(n) is true for all integers n � a.4

Theorem 5.10 gives a process for proving statements of the form: “For all integers n �
a, P(n).” As before, hypothesis (i) is called the base step, and (ii) is called the inductive
step.

Skeleton Proof 5.11 (Proof of (8n 2 Z)(n � a =) P(n)) by Induction). Here is the general
structure for a proof by induction when the base case does not necessarily involve a = 1.

Proof. We proceed by induction.

(i) Base step: [Verify that P(a) is true. This often, but not always, amounts to plug-
ging n = a into two sides of some claimed equation and verifying that both sides
are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all k 2 Z, if P(k) is true, then P(k +1)
is true.”] Let k � a be an integer and assume that P(k) is true. [Do something
to derive that P(k +1) is true.] Therefore, P(k +1) is true.

Thus, by the PMI, P(n) is true for all integers n � a.

Theorem 5.12. Let A be a finite set with n elements. Then P (A) is a set with 2n elements.5

Theorem 5.13. For all integers n � 0, 4 divides 9n � 5.
Theorem 5.14. For all integers n � 0, 4 divides 6 · 7n � 2 · 3n.
Theorem 5.15. For all integers n � 2, 2n > n+1.

Theorem 5.16. For all integers n � 0, 1 + 21 + 22 + · · ·+2n = 2n+1 � 1.
Theorem 5.17. Fix a real number r , 1. For all integers n � 0,

1 + r1 + r2 + · · ·+ rn =
rn+1 � 1
r � 1 .

Theorem 5.18. For all integers n � 3, 2 · 3+3 · 4+ · · ·+ (n� 1) ·n =
(n� 2)(n2 + 2n+3)

3
.

Theorem 5.19. For all integers n � 1,
1

1 · 2 +
1

2 · 3 + · · ·+ 1
n(n+1)

=
n

n+1
.

Theorem 5.20. For all integers n � 1,
1

1 · 3 +
1

3 · 5 +
1

5 · 7 + · · ·+ 1
(2n� 1)(2n+1)

=
n

2n+1
.

4Hint: Mimic the proof of Theorem 5.2, but this time use the set S = {k 2 N | P(a� k +1) is true}.
5We encountered this theorem back in Section 3.2 (see Conjecture 3.24), but we didn’t prove it. If you prove
this theorem using induction, at some point, you will need to argue that if you add one more element to a
finite set, then you end up with twice as many subsets. Also, notice that A may have 0 elements.
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Theorem 5.21. For all integers n � 0, 32n � 1 is divisible by 8.

Theorem 5.22. For all integers n � 2, 2n < (n+1)!.

Theorem 5.23. For all integers n � 2, 2 · 9n � 10 · 3n is divisible by 4.

Now consider an induction problem of a di↵erent sort, where you have to begin with
some experimentation.

Problem 5.24. For any n 2 N, say that n straight lines are “safely drawn in the plane” if
no two of them are parallel and no three of them meet in a single point. Let S(n) be the
number of regions formed when n straight lines are safely drawn in the plane.

(a) Compute S(1), S(2), S(3), and S(4).

(b) Conjecture a recursive formula for S(n); that is, a formula for S(n) which may in-
volve some of the previous terms {S(n � 1),S(n � 2), . . .}. (If necessary, first compute
a few more values of S(n).)

(c) Prove your conjecture.

5.3 Complete Induction

There is another formulation of induction, where the inductive step begins with a set of
assumptions rather than one single assumption. This method is sometimes called com-
plete induction or strong induction.

Theorem 5.25 (Principle of Complete Mathematical Induction). Let P(1),P(2),P(3), . . . be
a sequence of statements, one for each natural number. Assume that

(i) P(1) is true, and

(ii) For all k 2 N, if P(j) is true for all j 2 N such that j  k, then P(k +1) is true.

Then P(n) is true for all n 2 N.
Note the di↵erence between ordinary induction (Theorems 5.2 and 5.10) and complete

induction. For the induction step of complete induction, we are not only assuming that
P(k) is true, but rather that P(j) is true for all j from 1 to k. Despite the name, complete
induction is not any stronger or more powerful than ordinary induction. It is worth
pointing out that anytime ordinary induction is an appropriate proof technique, so is
complete induction. So, when should we use complete induction?

In the inductive step, you need to reach P(k + 1), and you should ask yourself which
of the previous cases you need to get there. If all you need, is the statement P(k), then
ordinary induction is the way to go. If two preceding cases, P(k1) and P(k), are necessary
to reach P(k+1), then complete induction is appropriate. In the extreme, if one needs the
full range of preceding cases (i.e., all statements P(1),P(2), . . . ,P(k)), then again complete
induction should be utilized.

Note that in situations where complete induction is appropriate, it might be the case
that you need to verify more than one case in the base step. The number of base cases to
be checked depends on how one needs to “look back” in the induction step.
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Skeleton Proof 5.26 (Proof of (8n 2 N)P(n) by Complete Induction). Here is the general
structure for a proof by complete induction.

Proof. We proceed by induction.

(i) Base step: [Verify that P(1) is true. Depending on the statement, you may also
need to verify that P(k) is true for other specific values of k.]

(ii) Inductive step: [Your goal is to prove “For all k 2 N, if for each k 2 N, P(j) is true
for all j 2 N such that j  k, then P(k + 1) is true.”] Let k 2 N. Suppose P(j)
is true for all j  k. [Do something to derive that P(k + 1) is true.] Therefore,
P(k +1) is true.

Thus, by the PCMI, P(n) is true for all integers n � a.

Recall that Theorem 5.10 generalized Theorem 5.2 and allowed us to handle situations
where the base case was something other than P(1). We can generalize complete induction
in the same way, but we won’t write this down as a formal theorem.

Theorem 5.27. Define a sequence of numbers by a1 = 1, a2 = 3, and an = 3an�1 �2an�2 for
all natural numbers n � 3. Then an = 2n � 1 for all n 2 N.
Theorem 5.28. Define a sequence of numbers by a1 = 3, a2 = 5, a3 = 9 and an = 2an�1 +
an�2 � 2an�3 for all natural numbers n � 4. Then an = 2n +1 for all n 2 N.
Theorem 5.29. Define a sequence of numbers by a1 = 1, a2 = 3, and an = an�1+an�2 for all
natural numbers n � 3. Then an <

⇣
7
4

⌘n
for all n 2 N.

Theorem 5.30. Define a sequence of numbers by a1 = 1, a2 = 2, a3 = 3 and an = an�1 +
an�2 + an�3 for all natural numbers n � 4. Then an < 2n for all n 2 N.
Theorem 5.31. Define a sequence of numbers by a1 = 1, a2 = 1, and an = an�1+an�2 for all
natural numbers n � 3. Then an <

⇣
5
3

⌘n
for all n 2 N.

Theorem 5.32. Every amount of postage that is at least 12 cents can be made from 4-cent
and 5-cent stamps.

Theorem 5.33. For any n � 4, one can obtain n dollars using only $2 bills and $5 bills.
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