Chapter 2

Mathematics and Logic

Before you get started, make sure you've read Chapter 1, which sets the tone for the work
we will begin doing here.

2.1 A Taste of Number Theory

In this section, we will work with the set of integers, Z ={...,-3,-2,-1,0,1,2,3,...}. The
purpose of this section is to get started with proving some theorems about numbers and
study the properties of Z. Because you are so familiar with properties of the integers,
one of the issues that we will bump into knowing which facts about the integers we can
take for granted. As a general rule of thumb, you should attempt to use the definitions
provided without relying too much on your prior knowledge. We will likely need to
discuss this further as issues arise.

It is important to note that we are diving in head first here. There are going to be some
subtle issues that you will bump into and our goal will be to see what those issues are,
and then we will take a step back and start again. See what you can do!

Recall that we use the symbol “€” as an abbreviation for the phrase “is an element of”
or sometimes simply “in.” For example, the mathematical expression “n € Z” means “n is
an element of the integers.”

Definition 2.1. An integer n is even if n = 2k for some k € Z.
Definition 2.2. An integer n is odd if n = 2k + 1 for some k € Z.

Notice that we framed the definition of “even” in terms of multiplication as opposed
to division. When tackling theorems and problems involving even or odd, be sure to
make use of our formal definitions and not some of the well-known divisibility proper-
ties. For now, you should avoid arguments that involve statements like, “even numbers
have no remainder when divided by 2 while odd numbers do have a remainder.” For the
remainder of this section, you may assume that every integer is either even or odd but
never both.

Theorem 2.3. The sum of two consecutive integers is odd.
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Theorem 2.4. If n is an even integer, then n~ is an even integer.

Problem 2.5. Prove or provide a counterexample: The sum of an even integer and an odd
integer is odd.

Question 2.6. Did Theorem 2.3 need to come before Problem 2.5? Could we have used
Problem 2.5 to prove Theorem 2.3? If so, outline how this alternate proof would go.
Perhaps your original proof utilized the approach I'm hinting at. If this is true, can you
think of a proof that does not rely directly on Problem 2.5? Is one approach better than
the other?

Problem 2.7. Prove or provide a counterexample: The product of an odd integer and an
even integer is odd.

Problem 2.8. Prove or provide a counterexample: The product of an odd integer and an
odd integer is odd.

Problem 2.9. Prove or provide a counterexample: The product of two even integers is
even.

Definition 2.10. An integer n divides the integer m, written n|m, if and only if there
exists k € Z such that m = nk. In the same context, we may also write that m is divisible
by n.

Question 2.11. For integers n and m, how are the following mathematical expressions
similar and how are they different?

(a) m|n

(b) —

n
(c) m/n

In this section on number theory, we allow addition, subtraction, and multiplication
of integers. In general, division is not allowed since an integer divided by an integer may
result in a number that is not an integer. The upshot: don’t write 7. When you feel the
urge to divide, switch to an equivalent formulation using multiplication. This will make
your life much easier when proving statements involving divisibility.

Problem 2.12. Let n € Z. Prove or provide a counterexample: If 6 divides n, then 3
divides n.

Problem 2.13. Let n € Z. Prove or provide a counterexample: If 6 divides n, then 4
divides n.

Theorem 2.14. Assume n,m,a € Z. If a|n, then a|mn.

A theorem that follows almost immediately from another theorem is called a corollary
(see Appendix B). See if you can prove the next result quickly using the previous theorem.
Be sure to cite the theorem in your proof.
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Corollary 2.15. Assume n,a € Z. If a divides n, then a divides n2.

Problem 2.16. Assume 1,4 € Z. Prove or provide a counterexample: If a divides n?, then
a divides n.

Theorem 2.17. Assume n,a € Z. If a divides n, then a divides —n.
Theorem 2.18. Assume n,m,a € Z. If a divides m and a divides n, then a divides m + n.

Problem 2.19. Is the converse! of Theorem 2.18 true? That is, is the following statement
true?

Assume n,m,a € 7. If a divides m + n, then a divides m and a divides n.
If the statement is true, prove it. If the statement is false, provide a counterexample.

Once we’ve proved a few theorems, we should be on the look out to see if we can
utilize any of our current results to prove new results. There’s no point in reinventing the
wheel if we don’t have to. Try to use a couple of our previous results to prove the next
theorem.

Theorem 2.20. Assume n,m,a € Z. If a divides m and a divides n, then a divides m — n.

Problem 2.21. Assume a,b,m € Z. Determine whether the following statement holds
sometimes, always, or never.

If ab divides m, then a divides m and b divides m.
Justify with a proof or counterexample.
Theorem 2.22. If a,b,c € Z such that a divides b and b divides ¢, then a divides c.
The previous theorem is referred to as transitivity of division of integers.

Theorem 2.23. The sum of any three consecutive integers is always divisible by three.

2.2 Introduction to Logic

After diving in head first in the last section, we’ll take a step back and do a more careful
examination of what it is we are actually doing.

Definition 2.24. A proposition (or statement) is a sentence that is either true or false.

For example, the sentence “All dogs have four legs” is a false proposition. However,
the perfectly good sentence “x = 1” is not a proposition all by itself since we don’t actually
know what x is.

Exercise 2.25. Determine whether the following are propositions or not. Explain.

1See Definition 2.39 for the formal definition of converse.
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(a) All cars are red.

(b) Every person whose name begins with ] has the name Joe.
(c) x? =4.

(d) There exists an x such that x? = 4.

(e) For all real numbers x, x> = 4.

(f) V2 is an irrational number.

(g) pis prime.

(h) Led Zeppelin is the best band of all time.

Given two propositions, we can form more complicated propositions using logical
connectives.

Definition 2.26. Let A and B be propositions.

(a) The proposition “not A” is true if and only if?> A is false; expressed symbolically as

and called the negation of A.

(b) The proposition “A and B” is true if and only if both A and B are true; expressed
symbolically as and called the conjunction of A and B.

(c) The proposition “A or B” is true if and only if at least one of A or B is true; expressed
symbolically as and called the disjunction of A and B.

(d) The proposition “If A, then B” is true if and only if both A and B are true, or A is

false; expressed symbolically as and called an implication or conditional
statement. Note that A — B may also be read as “A implies B” or “A only if B”.

Each of the theorems that we proved in Section 2.1 are examples of conditional state-
ments. However, some of the statements were disguised as such. For example, Theo-
rem 2.3 states, “The sum of two consecutive integers is odd.” We can reword this theorem
as, “If xe Z, then x+ (x+ 1) is odd.”

Exercise 2.27. Reword Theorem 2.23 so that it explicitly reads as a conditional statement.

The proofs of each of the theorems in Section 2.1 had the same format, which we refer
to as a direct proof.

Skeleton Proof 2.28 (Proof of A = B by direct proof). If you want to prove the impli-
cation A = B via a direct proof, then the structure of the proof is as follows.

>Throughout mathematics, the phrase “if and only if” is common enough that it is sometimes abbreviated
“iff.” Roughly speaking, this phrase/word means “exactly when.”
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Proof. Assume A.
... [Use definitions and known results to derive B] ...

Therefore, B. O

Exercise 2.29. Describe the meaning of —=(A A B) and —(A V B).

Exercise 2.30. Let A represent “6 is an even number” and B represent “6 is a multiple
of 4.” Express each of the following in ordinary English sentences and state whether the
statement is true or false.

(a) AAB
(b) AVB
(c) ~A

(d) -B

(e) =(AAB)
(f) ~(AV B)
(g) A= B

Definition 2.31. A truth table is a table that illustrates all possible truth values for a
proposition.

Example 2.32. Let A and B be propositions. Then the truth table for the conjunction AAB
is given by the following.

A B AAB
T T T
T F F
F T F
F F F

Notice that we have columns for each of A and B. The rows for these two columns corre-
spond to all possible combinations for A and B. The third column gives us the truth value
of A A B given the possible truth values for A and B.

Note that each proposition has two possible truth values: true or false. Thus, if a
compound proposition P is built from n propositions, then the truth table for P will
require 2" rows.

Exercise 2.33. Create a truth table for each of AV B, —=A, =(A A B), and —A A —B. Feel free
to add additional columns to your tables to assist you with intermediate steps.
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Problem 2.34. A coach promises, “If we win tonight, then I will buy you pizza tomorrow.”
Determine the case(s) in which the players can rightly claim to have been lied to. Use this
to help create a truth table for A — B.

Definition 2.35. Two statements P and Q are (logically) equivalent, expressed symboli-

cally as and read “P if and only if Q”, if and only if they have the same truth
table.

Each of the next three facts can be justified using truth tables.
Theorem 2.36. If A is a proposition, then —(—A) is equivalent to A.
Theorem 2.37 (DeMorgan’s Law). If A and B are propositions, then -(AAB) <= —-AV-B.

Problem 2.38. Let A and B be propositions. Conjecture a statement similar to Theo-
rem 2.37 for the proposition —(A Vv B) and then prove it. This is also called DeMorgan’s
Law.

Definition 2.39. The converse of A =— Bis B — A.

Exercise 2.40. Provide an example of a true conditional proposition whose converse is
false.

Definition 2.41. The inverse of A =— Bis -A — —B.

Exercise 2.42. Provide an example of a true conditional proposition whose inverse is
false.

Definition 2.43. The contrapositive of A — Bis -B — -A.

Exercise 2.44. Let A and B represent the statements from Exercise 2.30. Express the
following in ordinary English sentences.

(a) The converse of A = B.
(b) The contrapositive of A = B.

Exercise 2.45. Find the converse and the contrapositive of the following statement: “If a
person lives in Flagstaff, then that person lives in Arizona.”

Use a truth table to prove the following theorem.
Theorem 2.46. The implication A = B is equivalent to its contrapositive.

The upshot of Theorem 2.46 is that if you want to prove a conditional proposition,
you can prove its contrapositive instead, called proof by contraposition.

Skeleton Proof 2.47 (Proof of A — B by contraposition). If you want to prove the
implication A = B by proving its contrapositive =B = —A instead, then the structure
of the proof is as follows.
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Proof. We will prove that if A, then B by proving its contrapositive. Assume —B.

This proves that if =B, then —A. Therefore, if A, then B. O

... [Use definitions and known results to derive —A] ...

Problem 2.48. Consider the following statement:

Assume x € Z. If x? is odd, then x is an odd integer.

The items below can be assembled to form a proof of this statement, but they are currently
out of order. Put them in the proper order.

1.
2.

9.

10.

Thus, we assume that x is an even integer.

We will prove this by contraposition.

. Thus, x? is twice an integer.

Since x = 2k, we have that x> = (2k)? = 4k°.

Since k is an integer, 2k? is also an integer.

By the definition of even, there is an integer k such that x = 2k.

Since the contrapositive is equivalent to the original statement and we have proved

the contrapositive, the original statement is true.

2

By the definition of even integer, x“ is an even integer.

2

The contrapositive is “If x is an even integer, then x“ is an even integer.”

Notice that x? = 2(2k?).

Try proving each of the next three theorems by proving the contrapositive of the given
statement.

Theorem 2.49. Assume x € Z. If x% is even, then x is even.

Theorem 2.50. Assume x,y € Z. If xy is odd, then both x and p are odd.

Theorem 2.51. Assume x,y € Z. If xp is even, then x or y is even.
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2.3 Negating Implications and Proof by Contradiction

So far we have discussed how to negate propositions of the form A, AA B, and AV B for
propositions A and B. However, we have yet to discuss how to negate propositions of the
form A = B. To begin, try proving the following result with a truth table.

Theorem 2.52. The implication A = B is equivalent to the disjunction —A V B.
The next result follows quickly from Theorem 2.52 together with DeMorgan’s Law.
Corollary 2.53. The proposition -(A = B) is equivalent to A A —=B.

Exercise 2.54. Let A and B be the propositions “Darth Vader is a hippie” and “Sarah Palin
is a liberal,” respectively.

(a) Express A = B as an English sentence involving the disjunction “or.”

(b) Express -(A = B) as an English sentence involving the conjunction “and.”

Exercise 2.55. The proposition “If .99 = % + % + ﬁ +---, then .99 = 1” is false. Write

its (true) negation, as a conjunction.
Recall that a proposition is exclusively either true or false—it can never be both.

Definition 2.56. A compound proposition that is always false is called a contradiction.
A compound proposition that is always true is called a tautology.

Theorem 2.57. For any proposition A, the proposition —A A A is a contradiction.

Exercise 2.58. Provide an example of a tautology using arbitrary propositions and any of
the logical connectives —, A, and V. Prove that your example is in fact a tautology.

Suppose that we want to prove some proposition P (which might be something like
A = B or even more complicated). One approach, called proof by contradiction, is
to assume —P and then logically deduce a contradiction of the form Q A =Q, where Q
is some proposition (possibly equal to P). Since this is absurd, the assumption —P must
have been false, so P is true. The tricky part about a proof by contradiction is that it is
not usually obvious what the statement Q should be.

Skeleton Proof 2.59 (Proof of P by contradiction). Here is what the general structure for
a proof by contradiction looks like if we are trying to prove the proposition P.

Proof. For sake of a contradiction, assume —P.

... [Use definitions and known results to derive
some Q and its negation —~Q.] ...

This is a contradiction. Therefore, P. O

Proof by contradiction can be useful for proving statements of the form A — B,
where —B is easier to “get your hands on,” because -(A — B) is equivalent to A A =B
(see Corollary 2.53).
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Skeleton Proof 2.60 (Proof of A = B by contradiction). If you want to prove the impli-
cation A = B via a proof by contradiction, then the structure of the proof is as follows.

Proof. For sake of a contradiction, assume A and —B.

... [Use definitions and known results to derive
some Q and its negation —Q.] ...

This is a contradiction. Therefore, if A, then B. O

Establish the following theorem in two ways: (i) prove the contrapositive, and (ii)
prove via contradiction.

Theorem 2.61. Assume that x € Z. If x is odd, then 2 does not divide x. (Prove in two
different ways.)

Prove the following theorem via contradiction. Afterward, consider the difficulties
one might encounter when trying to prove the result more directly.

Theorem 2.62. Assume that x,y € N.% If x divides y, then x < p.

2.4 Introduction to Quantification

The sentence “x > 0” is not itself a proposition because x is a free variable. A sentence
with a free variable is a predicate. To turn a predicate into a proposition, we must either
substitute values for each free variable, or else “quantify” the free variables.

Function notation is a convenient way to represent predicates. For example, each of
the following represents a predicate with the indicated free variables.

o S(x):=“x*-4=0"
e L(ab):="“a<b”
e F(x,v):=“x1is friends with p”

The notation := indicates a definition. Also, note that the use of the quotation marks
above removed some ambiguity. What would S(x) = x> —4 = 0 mean? It looks like S(x)
equals 0, but actually we want S(x) to represent the whole sentence “x> -4 = 0",

One way we can make propositions out of predicates is by assigning specific values to
the free variables. That is, if P(x) is a predicate and x is specific value for x, then P(x) is
now a proposition (and is either true or false).

Exercise 2.63. Consider S(x) and L(a,b) as defined above. Determine the truth values of
S(0), S(-2), L(2,1), and L(-3,-2). Is L(2,b) a proposition or a predicate? Explain.

3N = {1,2,3,...} is the set of natural numbers. Some mathematicians (set theorists, in particular) include 0
in N, but this will not be our convention. The given statement is not true if we replace N with Z. Do you
see why?
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Besides substituting specific values for free variables in a predicate, we can also make
a claim about which values of the free variables apply to the predicate.

Exercise 2.64. Both of the following sentences are propositions. Decide whether each is
true or false. What would it take to justify your answers?

(a) ForallxeR, x> -4=0.%
(b) There exists x € R such that x> —4 = 0.

Definition 2.65. “For all” is the universal quantifier and “there exists...such that” is
the existential quantifier.

We can replace “there exists...such that” with phrases like “for some” (possibly with
some other tweaking to the sentence). Similarly, “for all”, “for any”, “for every” are used
interchangeably in mathematics (even though they might convey slightly different mean-
ings in colloquial language). It is important to note that the existential quantifier is mak-
ing a claim about “at least one” not “exactly one.”

Variables that are quantified with a universal or existential quantifier are said to be
bound. To be a proposition, all variables must be bound. That is, in a proposition all
variables are quantified.

We must take care to specify the universe of acceptable values for the free variables.
Consider the sentence “For all x, x > 0.” Is this sentence true or false? The answer de-
pends on what set the universal quantifier applies to. Certainly, the sentence is false if
we apply it for all x € Z. However, the sentence is true for all x € N. Context may resolve
ambiguities, but otherwise, we must write clearly: “For all x € Z, x > 0” or “For all x e N,
x> 0.” The set of acceptable values for a variable is called the universe (of discourse).

Exercise 2.66. Suppose our universe of discourse is the set of integers.
(a) Provide an example of a predicate P(x) such that “For all x, P(x)” is true.

(b) Provide an example of a predicate Q(x) such that “For all x, Q(x)” is false, but “There
exists x such that Q(x)” is true.

If a predicate has more than one free variable, then we can build propositions by
quantifying each variable. However, the order of the quantifiers is extremely important!

Exercise 2.67. Let P(x,p) be a predicate with free variables x and y in a universe of dis-
course U. One way to quantify the variables is “For all x € U, there exists y € U such that
P(x,v).” How else can the variables be quantified?

The next exercise illustrates that at least some of the possibilities listed in the previous
exercise are not equivalent to each other.

Exercise 2.68. Suppose the universe of discourse is the set of people. Consider the pred-
icate M(x,y) := “x is married to y”. Discuss the meaning of each of the following.

“The symbol R denotes the set of all real numbers.
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(a) For all x, there exists y such that M(x,p).

(b) There exists p such that for all x, M(x, ).

(c) For all x, for all y, M(x,v).

(d) There exists x such that there exists y such that M(x,p).

Exercise 2.69. Consider the predicate F(x,y) := “x = y2”

the following.

. Discuss the meaning of each of

(a) There exists x such that there exists y such that F(x,p).
(b) There exists p such that there exists x such that F(x,p).
(c) Forall y e R, for all x e R, F(x,p).

There are a couple of key points to keep in mind about quantification. To be a propo-
sition, all variables must be quantified. This can happen in at least two ways:

e The variables are explicitly bound by quantifiers in the same sentence.

e The variables are implicitly bound by preceding sentences or by context. Statements
of the form “Let x =...” and “Let x €...” bind the variable x and remove ambiguity.

The order of the quantification is important. Reversing the order of the quantifiers can
substantially change the meaning of a proposition.

Quantification and logical connectives (“and,” “or,” “If..., then...,” and “not”) enable
complex mathematical statements. For example, the formal definition of lim,_,. f(x) =L
is

For all € > 0, there exists 6 > 0 such that for all x, if 0 < |x —¢| < 6, then
f(0)-Ll<e.

In order to study the abstract nature of complicated mathematical statements, it is
useful to adopt some notation.

Definition 2.70. The universal quantifier “for all” is denoted , and the existential
quantifier “there exists. .. such that” is denoted [3 ]

Using our abbreviations for the logical connectives and quantifiers, we can symbol-
ically represent mathematical propositions. For example, the (true) proposition “There
exists x € R such that x> —1 = 0” becomes “(Ix € R)(x? — 1 = 0),” while the (false) propo-
sition “For all x € N, there exists y € N such that y <x” becomes “(Vx)(xe N = (dy)(y €
N = p<x))”or “(VxeN)(dy e N)(y <x).”

Exercise 2.71. Convert the following statements into statements using only logical sym-
bols. Assume that the universe of discourse is the set of real numbers.

(a) There exists a number x such that x> + 1 is greater than zero.
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(b) There exists a natural number # such that n? = 36.
(c) For every real number x, x? is greater than or equal to zero.

Exercise 2.72. Express the formal definition of a limit (given above Definition 2.70) in
logical symbols.

If A(x) and B(x) are predicates, then it is standard practice for the sentence A(x) —
B(x) to mean (Vx)(A(x) = B(x)) (where the universe of discourse for x needs to be made
clear). In this case, we say that the universal quantifier is implicit.

Exercise 2.73. Consider the proposition “If € > 0, then there exists N € N such that 1/N <
€.” Assume the universe of discourse is the set R.

(a) Express the statement in logical symbols. Is the statement true?

(b) Reverse the order of the quantifiers to get a new statement. Does the meaning
change? If so, how? Is the new statement true?

The symbolic expression (Vx)(¥Yy) can be replaced with the simpler expression (Vx,v)
as long as x and y are elements of the same universe.

Exercise 2.74. Express the statement “For all x,y € R with x <y, there exists m € R such
that x <m <y” using logical symbols.

Exercise 2.75. Rewrite the following statements in words and determine whether each is
true or false.

(a) (Yn e N)(n?>5)

(b) (AneN)(n>-1=0)

(c) AN eN)(¥n>N)( <0.01)

(d) (Ym,neZ)(2lmA2n = 2|(m+n))
(e) (VxeN)(dy e N)(x -2y = 0)

(f) (AxeN)(Vy e N)(y <x)

To whet your appetite for the next section, consider how you might prove a statement
of the form “For all x....” If a statement is false, then its negation is true. How would you
go about negating a statement involving quantifiers?
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2.5 More About Quantification

Mathematical proofs do not explicitly use the symbolic representation of a given state-
ment in terms of quantifiers and logical connectives. Nonetheless, having this notation at
our disposal allows us to compartmentalize the abstract nature of mathematical propo-
sitions and will provide us with a way to talk about the meta-concepts surrounding the
construction of proofs.

Definition 2.76. Two quantified propositions are equivalent in a given universe of dis-
course if and only if they have the same truth value in that universe. Two quantified
propositions are equivalent if and only if they are equivalent in every universe of dis-
course.

Exercise 2.77. Consider the propositions (3x)(x?> — 4 = 0) and (Ix)(x*> -2 = 0).

(a) Are these propositions equivalent if the universe of discourse is the set of real num-
bers?

(b) Give two different universes of discourse that yield different truth values for these
propositions.

(c) What can you conclude about the equivalence of these statements?

It is worth pointing out an important distinction. Consider the propositions “All cars
are red” and “All natural numbers are positive”. Both of these are instances of the log-
ical form (Vx)P(x). It turns out that the first proposition is false and the second is true;
however, it does not make sense to attach a truth value to the logical form. A logical form
is a blueprint for particular propositions. If we are careful, it makes sense to talk about
whether two logical forms are equivalent. For example, (Vx)(P(x) = Q(x)) is equivalent
to (Vx)(—=Q(x) = —P(x)). For fixed P(x) and Q(x), these two forms will always have the
same truth value independent of the universe of discourse. If you change P(x) and Q(x),
then the truth value may change, but the two forms will still agree.

The next theorem tell us how to negate logical forms involving quantifiers.

Theorem 2.78. Let P(x) be a predicate. Then
(a) =(Vx)P(x) is equivalent to (dx)(—=P(x))
(b) —(dx)P(x) is equivalent to (Vx)(=P(x)).

Exercise 2.79. Negate each of the following. Disregard the truth value and the universe
of discourse.

(a) (Vx)(x>3)
(b) (Ix)(x is prime A x is even)
(c) All cars are red.

(d) Every Wookiee is named Chewbacca.
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(e) Some hippies are Republican.

(f) For all x € N, x2 + x + 41 is prime.

(g) There exists x € Z such that 1/x ¢ Z.

(h) There is no function f such that if f is continuous, then f is not differentiable.

Using Theorem 2.78 and our previous results involving quantification, we can negate
complex mathematical propositions by working from left to right. For example, if we
negate the (false) proposition (dx € R)(Vy € R)(x+y = 0), we obtain the proposition —(Jx €
R)(Vy € R)(x + v = 0), which is equivalent to (Vx € R)(dy e R)(x+p = 0).

For a more complicated example, consider the (false) proposition (Vx)[x > 0 =
(Ay)(y < 0 Axy > 0)]. Then its negation =(¥x)[x >0 = (dy)(y < 0 A xy > 0)] is equiv-
alent to (dx)[x > 0 A =(dy)(y < 0 A xp > 0)], which happens to be equivalent to (3x)[x >
0A(Vp)(y =0V xy <0)]. Can you identify the previous theorems that were used when
negating this proposition?

Exercise 2.80. Negate each of the following. Disregard the truth value and the universe
of discourse.

(a) (VneN)(dmeN)(m<n)

(b) (Vx,9,z€ Z)((xy is even A yz is even) = xz is even)
) For all positive real numbers x, there exists a real number y such that y? = x.
)

(c
(d) There exists a married person x such that for all married people p, x is married to y.

At this point, we should be able to use our understanding of quantification to con-
struct counterexamples to complicated false propositions and proofs of complicated true
propositions. Here are some general proof structures for various logical forms.

Skeleton Proof 2.81 (Direct Proof of (Vx)P(x)). Here is the general structure for a direct
proof of the proposition (Vx)P(x).

Proof. Let x € U. [U is the universe of discourse]
... [Use definitions and known results.] ...

Therefore, P(x) is true. Since x was arbitrary, for all x, P(x). O

Skeleton Proof 2.82 (Proof of (Vx)P(x) by Contradiction). Here is the general structure
for a proof of the proposition (Vx)P(x) via contradiction.

Proof. For sake of a contradiction, assume that there exists x € U such that —=P(x).
[U is the universe of discourse]

... [Do something to derive a contradiction.] ...

This is a contradiction. Therefore, for all x, P(x) is true. O
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Skeleton Proof 2.83 (Direct Proof of (1x)P(x)). Here is the general structure for a direct
proof of the proposition (dx)P(x).

Proof. ... [Use definitions and previous results to deduce that an x exists for which P(x)
is true; or if you have an x that works, just verify that it does.] ...
Therefore, there exists x such that P(x). O

Skeleton Proof 2.84 (Proof of (3x)P(x) by Contradiction). Here is the general structure
for a proof of the proposition (dx)P(x) via contradiction.

Proof. For sake of a contradiction, assume that for all x, =P(x).

... [Do something to derive a contradiction.] ...

This is a contradiction. Therefore, there exists x such that P(x). O

Note that if Q(x) is a proposition for which (Yx)Q(x) is false, then a counterexample
to this proposition amounts to showing (3x)(=Q(x)), which might be proved via the third
scenario above.

It is important to point out that sometimes we will have to combine various proof
techniques in a single proof. For example, if you wanted to prove a proposition of the
form (Vx)(P(x) = Q(x)) by contradiction, we would start by assuming that there exists
x such that P(x) and —Q(x).

Problem 2.85. For each of the following statements, determine its truth value. If the
statement is false, provide a counterexample. Prove at least two of the true statements.

(a) Forall neN, n? > 5.

(b) There exists n € N such that n> -1 = 0.

(c) There exists x € Nsuch that forally e N, p <x.

(d) Forall xeZ, x3 > x.

(e) For all n € Z, there exists m € Z such that n+m = 0.

(f) There exists integers a and b such that 2a+7b = 1.

(g) There do not exist integers m and n such that 2m+4n =7.

(h) For all integers a,b, ¢, if a divides bc, then either a divides b or a divides c.
To prove the next theorem, you might want to consider two different cases.

Theorem 2.86. For all integers, 3n2+n+ 14 is even.
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