
Chapter 4

Families of Groups

In this chapter we will explore a few families of groups, some of which we are already
familiar with.

4.1 Cyclic Groups
Recall that if G is a group and g 2 G, then the cyclic subgroup generated by g is given by

hgi = {gk | k 2 Z}.

It is important to point out that hgimay be finite or infinite. In the finite case, the Cayley
diagram with generator g gives us a good indication of where the word “cyclic” comes
from (see Problem 4.21). If there exists g 2 G such that G = hgi, then we say that G is a
cyclic group.

Problem 4.1. List all of the elements in each of the following cyclic subgroups.

(a) hri, where r 2D3

(b) hri, where r 2 R4

(c) hrsi, where rs 2D4

(d) hr2i, where r2 2 R6

(e) hii, where i 2Q8

(f) h6i, where 6 2 Z and the operation is ordinary addition

Problem 4.2. Consider the group of invertible 2 ⇥ 2 matrices with real number entries
under the operation of matrix multiplication. This group is denoted by GL2(R). List the
elements in the cyclic subgroups generated by each of the following matrices.
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(a)
"
0 �1
�1 0

#
(b)

"
0 �1
1 0

#
(c)

"
2 0
0 1

#

Problem 4.3. Determine whether each of the following groups is cyclic. If the group is
cyclic, find at least one generator.

(a) S2

(b) R3

(c) R4

(d) V4

(e) R5

(f) R6

(g) D3

(h) R7

(i) R8

(j) Spin1⇥2

(k) D4

(l) Q8

Problem 4.4. Determine whether each of the following groups is cyclic. If the group is
cyclic, find at least one generator. If you believe that a group is not cyclic, try to sketch
an argument.

(a) (Z,+)

(b) (R,+)

(c) (R+
, ·)

(d) ({6n | n 2 Z}, ·)

(e) GL2(R) under matrix multiplication

(f) {(cos(⇡/4) + i sin(⇡/4))n | n 2 Z} under multiplication of complex numbers

Theorem 4.5. If G is a cyclic group, then G is abelian.

Problem 4.6. Provide an example of a finite group that is abelian but not cyclic.

Problem 4.7. Provide an example of an infinite group that is abelian but not cyclic.

Theorem 4.8. If G is a group and g 2 G, then hgi = hg�1i.
Theorem 4.9. If G is a cyclic group such that G has exactly one element that generates all
of G, then the order of G is at most order 2.

Theorem 4.10. If G is a group such that G has no proper nontrivial subgroups, then G is
cyclic.

Recall that the order of a group G, denoted |G|, is the number of elements in G. We
define the order of an element g , written |g |, to be the order of hgi. That is, |g | = |hgi|. It is
clear that G is cyclic with generator g if and only if |G| = |g |.
Problem 4.11. What is the order of the identity in any group?

Problem 4.12. Find the orders of each of the elements in each of the groups in Prob-
lem 4.3.
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Problem 4.13. Consider the group (Z,+). What is the order of 1? Are there any elements
in Z with finite order?

Problem 4.14. Find the order of each of the matrices in Problem 4.2.

The next result follows immediately from Theorem 4.8.

Theorem 4.15. If G is a group and g 2 G, then |g | = |g�1|.

The next result should look familiar and will come in handy a few times in this chap-
ter. We’ll take the result for granted and not worry about proving it.

Theorem 4.16 (Division Algorithm). If n is a positive integer and m is any integer, then
there exist unique integers q (called the quotient) and r (called the remainder) such that
m = nq + r, where 0  r < n.

Theorem 4.17. Suppose G is a group and let g 2 G. The subgroup hgi is finite if and only
if there exists n 2 N such that gn = e.⇤

Corollary 4.18. If G is a finite group, then for all g 2 G, there exists n 2 N such that gn = e.

Theorem 4.19. Suppose G is a group and let g 2 G such that hgi is a finite group. If n
is the smallest positive integer such that gn = e, then hgi = {e,g,g2, . . . , gn�1} and this set
contains n distinct elements.†

The next result provides an extremely useful interpretation of the order of an element.

Corollary 4.20. If G is a group and g 2 G such that hgi is a finite group, then the order of
g is the smallest positive integer n such that gn = e.

Problem 4.21. Suppose G is a finite cyclic group such that G = hgi. Using the generating
set {g}, what does the Cayley diagram for G look like?

Problem 4.22. Suppose G is a finite cyclic group of order n with generator g . If we write
down the group table for G using e,g,g

2
, . . . , g

n�1 as the labels for the rows and columns,
are there any interesting patterns in the table?

Problem 4.23. Notice that in the definition for hgi, we allow the exponents on g to be
negative. Explain why we only need to use positive exponents when hgi is a finite group.

The Division Algorithm should come in handy when proving the next theorem.

Theorem 4.24. Suppose G is a group and let g 2 G such that |g | = n. Then g
i = g

j if and
only if n divides i � j .
⇤For the forward implication, if hgi is finite, then there exists distinct positive integers i and j such that
g
i = g

j . Can you find a useful way to rewrite this equation? For the reverse implication, let m 2 Z and use
the Division Algorithm with m and n.
†Note that Theorem 4.17 together with the Well-Ordering Principle guarantees the existence of a smallest
positive integer n such that gn = e. The claim that the set contains n distinct elements is not immediate.
You need to argue that there are no repeats in the list. Choose distinct i, j 2 {0,1, . . . ,n � 1} such that i , j
and then show that gi , gj . Consider a proof by contradiction and try to contradict the minimality of n.
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Corollary 4.25. Suppose G is a group and let g 2 G such that |g | = n. If gk = e, then n

divides k.

Recall that for n � 3, Rn is the group of rotational symmetries of a regular n-gon,
where the operation is composition of actions.

Theorem 4.26. For all n � 3, Rn is cyclic.

Theorem 4.27. Suppose G is a finite cyclic group of order n. Then G is isomorphic to Rn

if n � 3, S2 if n = 2, and the trivial group if n = 1.

Most of the previous results have involved finite cyclic groups. What about infinite
cyclic groups?

Theorem 4.28. Suppose G is a group and let g 2 G. The subgroup hgi is infinite if and
only if each g

k is distinct for all k 2 Z.‡

Theorem 4.29. If G is an infinite cyclic group, then G is isomorphic to Z (under the
operation of addition).

The upshot of Theorems 4.29 and 4.27 is that up to isomorphism, we know exactly
what all of the cyclic groups are.

We now turn our attention to two new groups. Recall that two integers are relatively
prime if the only positive integer that divides both of them is 1. That is, integers n and k

are relatively prime if and only if gcd(n,k) = 1.

Definition 4.30. Let n 2 N and define the following sets.

(a) Zn := {0,1, . . . ,n� 1}

(b) Un := {k 2 Zn | gcd(n,k) = 1}

Example 4.31. For example, Z12 = {0,1,2,3,4,5,6,7,8,9,10,11} while U12 = {1,5,7,11}
since 1, 5, 7, and 11 are the only elements in Z12 that are relatively prime to 12.

For each set in Definition 4.30, the immediate goal is to determine a binary operation
that will yield a group. The key is to use modular arithmetic. Let n be a positive integer.
To calculate the sum (respectively, product) of two integers modulo n (we say “mod n”
for short), add (respectively, multiply) the two numbers and then find the remainder after
dividing the sum (respectively, product) by n. For example, 4 + 9 is 3 mod 5 since 13 has
remainder 3 when divided by 5. Similarly, 4 ·9 is 1 mod 5 since 36 has remainder 1 when
divided by 5. The hope is that these two operations turn Zn and Un into groups.

We write i ⌘ j (mod n), and say “i is equivalent to j modulo n” or “i is equal to j

modulo n”, if i and j both have the same remainder when divided by n. It is common
to abbreviate “modulo” as “mod”. It is also common to write i ⌘n j , or even i = j if the
context is perfectly clear.

‡For the forward implication, try a proof by contradiction and suppose there exists integers i and j such
that gi = g

j .
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It is well-known, and not too hard to prove, that ⌘n is an equivalence relation on Z.
The corresponding equivalence classes are called congruence classes. The elements of a
single congruence class are the integers that all have the same remainder when divided
by n. According to the Division Algorithm, there are n congruence classes modulo n,
one for each of the remainders 0,1, . . . ,n � 1. We can think of Zn as the set of canonical
representatives of these equivalence classes.

Theorem 4.32. Let n be a positive integer and let i, j 2 Z. Then i ⌘ j (mod n) if and only
if n divides i � j .

The next result follows immediately from Theorems 4.32 and 4.24.

Corollary 4.33. Suppose G is a group and let g 2 G such that |g | = n. Then g
i = g

j if and
only if i ⌘ j (mod n).

Theorem 4.34. The set Zn is a group under addition mod n.

Theorem 4.35. The set Un is a group under multiplication mod n.

Problem 4.36. Consider Z4.

(a) Find the group table for Z4.

(b) Is Z4 cyclic? If so, list elements of Z4 that individually generate Z4. If Z4 is not
cyclic, explain why.

(c) Is Z4 isomorphic to either of R4 or V4? Justify your answer.

(d) Draw the subgroup lattice for Z4.

Problem 4.37. Consider U10 = {1,3,7,9}.

(a) Find the group table for U10.

(b) Is U10 cyclic? If so, list elements of U10 that individually generate U10. If U10 is not
cyclic, explain why.

(c) Is U10 isomorphic to either of R4 or V4? Justify your answer.

(d) Is U10 isomorphic to Z4? Justify your answer.

(e) Draw the subgroup lattice for U10.

Problem 4.38. Consider U12 = {1,5,7,11}.

(a) Find the group table for U12.

(b) Is U12 cyclic? If so, list elements of U12 that individually generate U12. If U12 is not
cyclic, explain why.

(c) Is U12 isomorphic to either of R4 or V4? Justify your answer.
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(d) Draw the subgroup lattice for U12.

In light of Exercises 4.37 and 4.38, Un may or may not be cyclic. Nonetheless, as the
next theorem illustrates, Un is always abelian.

Theorem 4.39. For all n, Un is abelian.

The upshot of the next theorem is that for n � 3, Zn is just the set of exponents in the
set Rn = {e, r, r2, . . . , rn�1} (where e = r

0).

Theorem 4.40. For n � 3, Zn � Rn. Moreover, Z2 � S2 and Z1 is isomorphic to the trivial
group.

One consequence of the previous theorem is that Zn is always cyclic. Combining the
results of Theorems 4.27 and 4.29 together with Theorem 4.40, we immediately obtain
the following.

Theorem 4.41. Let G be a cyclic group. If the order of G is infinite, then G is isomorphic
to Z. If G has finite order n, then G is isomorphic to Zn.

Now that we have a complete description of the cyclic groups, let’s focus our attention
on subgroups of cyclic groups.

Theorem 4.42. Suppose G is a cyclic group. If H  G, then H is also cyclic.

It turns out that for proper subgroups, the converse of Theorem 4.42 is not true.

Problem 4.43. Provide an example of a group G such that G is not cyclic, but all proper
subgroups of G are cyclic.

The next result o�cially settles Problem 3.16(d) and also provides a complete descrip-
tion of the subgroups of infinite cyclic groups up to isomorphism.

Corollary 4.44. The subgroups of Z are precisely the groups nZ for n 2 Z.

Let’s further explore finite cyclic groups.

Theorem 4.45. If G is a finite cyclic group with generator g such that |G| = n, then for all
m 2 Z, |gm| = n

gcd(n,m)
.§

Theorem 4.46. If G is a finite cyclic group with generator g such that |G| = n, then hgmi =
hgki if and only if gcd(m,n) = gcd(k,n).¶

Problem 4.47. Suppose G is a cyclic group of order 12 with generator g .

§By Corollary 4.20, the order of gm is the smallest positive exponent k such that (gm)k = e. First, verify that
k = n

gcd(n,m) has the desired property and then verify that it is the smallest such exponent.
¶Use Theorem 4.45 for the forward implication. For the reverse implication, first prove that for all m 2 Z,
hgmi = hggcd(m,n)i by proving two set containments. To show hgmi ✓ hggcd(m,n)i, use the fact that there exists
an integer q such that m = q · gcd(m,n). For the reverse containment, you may freely use a fact known as
Bezout’s Lemma, which states that gcd(m,n) = nx +my for some integers x and y.
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(a) Find the orders of each of the following elements: g2, g7, g8.

(b) Which elements of G individually generate G?

Corollary 4.48. SupposeG is a finite cyclic group with generator g such that |G| = n. Then
hgi = hgki if and only if n and k are relatively prime. That is, gk generates G if and only if
n and k are relatively prime.

Problem 4.49. Consider Z18.

(a) Find all of the elements of Z18 that individually generate all of Z18.

(b) Draw the subgroup lattice for Z18. For each subgroup, list the elements of the corre-
sponding set. Moreover, circle the the elements in each subgroup that individually
generate that subgroup. For example, h2i = {0,2,4,6,8,10,12,14,16}. In this case,
we should circle 2, 4, 8, 10, 14, and 16 since each of these elements individually
generate h2i and none of the remaining elements do. I’ll leave it to you to figure out
why this is true.

Problem 4.50. Repeat the above exercise, but this time use Z12 instead of Z18.

Corollary 4.51. If G is a finite cyclic group such that |G| = p, where p is prime, then G has
no proper nontrivial subgroups.

Problem 4.52. If there is exactly one group up to isomorphism of order n, then to what
group are all the groups of order n isomorphic?

We conclude this section with a couple interesting counting problems involving the
number of generators of certain cyclic groups.

Problem 4.53. Let p and q be distinct primes. Find the number of generators of Zpq.

Problem 4.54. Let p be a prime. Find the number of generators of Zpr , where r is an
integer greater than or equal to 1.

4.2 Dihedral Groups
We can think of finite cyclic groups as groups that describe rotational symmetry. In par-
ticular, Rn is the group of rotational symmetries of a regular n-gon. Dihedral groups are
those groups that describe both rotational and reflectional symmetry of regular n-gons.

Definition 4.55. For n � 3, the dihedral groupDn is defined to be the group consisting of
the symmetry actions of a regular n-gon, where the operation is composition of actions.

For example, as we’ve seen, D3 and D4 are the symmetry groups of equilateral trian-
gles and squares, respectively. The symmetry group of a regular pentagon is denoted by
D5. It is a well-known fact from geometry that the composition of two reflections in the
plane is a rotation by twice the angle between the reflecting lines.
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Theorem 4.56. The group Dn is a non-abelian group of order 2n.

Theorem 4.57. For n � 3, Rn Dn.

Theorem 4.58. Fix n � 3 and consider Dn. Let r be rotation clockwise by 360�/n and let s
and s

0 be any two adjacent reflections of a regular n-gon. Then

(a) Dn = hr, si = {e, r, r2, . . . , rn�1|           {z           }
rotations

, s, sr, sr
2
, . . . , sr

n�1
|               {z               }

reflections

} and

(b) Dn = hs, s0i = all possible products of s and s
0.

Theorem 4.59. Fix n � 3 and consider Dn. Let r be rotation clockwise by 360�/n and let
s and s

0 be any two adjacent reflections of a regular n-gon. Then the following relations
hold.

(a) r
n = s

2 = (s0)2 = e,

(b) r
�k = r

n�k (special case: r�1 = r
n�1),

(c) sr
k = r

n�k
s (special case: sr = r

n�1
s),

(d) ss
0
s · · ·|{z}

n factors

= s
0
ss
0 · · ·| {z }

n factors

.

Problem 4.60. From Theorem 4.58, we know

Dn = hr, si = {e, r, r2, . . . , rn�1|           {z           }
rotations

, s, sr, sr
2
, . . . , sr

n�1
|               {z               }

reflections

}.

If you were to create the group table forDn so that the rows and columns of the table were
labeled by e, r, r

2
, . . . , r

n�1
, s, sr, sr

2
, . . . , sr

n�1 (in exactly that order), do any patterns arise?
Where are the rotations? Where are the reflections?

Problem 4.61. What does the Cayley diagram for Dn look like if we use {r, s} as the gen-
erating set? What if we use {s, s0} as the generating set?

4.3 Symmetric Groups
Recall the groups S2 and S3 from Problems 2.61 and 2.23. These groups act on two and
three coins, respectively, that are in a row by rearranging their positions (but not flipping
them over). These groups are examples of symmetric groups. In general, the symmetric
group on n objects is the set of permutations that rearranges the n objects. The group
operation is composition of permutations. Let’s be a little more formal.

Definition 4.62. A permutation of a set A is a function � : A! A that is both one-to-one
and onto.
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You should take a moment to convince yourself that the formal definition of a permu-
tation agrees with the notion of rearranging the set of objects. The do-nothing action is
the identity permutation, i.e., �(a) = a for all a 2 A. There are many ways to represent a
permutation. One visual way is using permutation diagrams, which we will introduce
via examples.

Consider the following diagrams:

↵ =

1 2 3 4 5r
r
r

r
r

r
r

r
r

r
� =

1 2 3 4 5r
r
r

r
r

r
r
r

r
r

� =

1 2 3 4 5r
r
r

r
r

r
r

r
r

r
� =

1 2 3 4 5r
r
r

r
r
r

r
r

r
r

Each of these diagrams represents a permutation on five objects. I’ve given the permu-
tations the names ↵, �, � , and � . The intention is to read the diagrams from the top
down. The numbers labeling the nodes along the top are identifying position. Following
an edge from the top row of nodes to the bottom row of nodes tells us what position an
object moves to. It is important to remember that the numbers are referring to the posi-
tion of an object, not the object itself. For example, � is the permutation that sends the
object in the second position to the fourth position, the object in the third position to the
second position, and the object in the fourth position to the third position. Moreover, the
permutation � doesn’t do anything to the objects in positions 1 and 5.

Problem 4.63. Describe in words what the permutations � and � do.

Problem 4.64. Draw the permutation diagram for the do-nothing permutation on 5 ob-
jects. This is called the identity permutation. What does the identity permutation dia-
gram look like in general for arbitrary n?

Definition 4.65. The set of all permutations on n objects is denoted by Sn.

Problem 4.66. Draw all the permutation diagrams for the permutations in S3.

Problem 4.67. How many distinct permutations are there in S4? How about Sn for any
n 2 N?

If Sn is going to be a group, we need to know how to compose permutations. This
is easy to do using the permutation diagrams. Consider the permutations ↵ and � from
earlier. We can represent the composition ↵ � � via

↵ � � =

1 2 3 4 5

�

r
r
r

r
r

r
r
r

r
r

↵

r
r
r

r
r

r
r

r
r

r
=

1 2 3 4 5r
r
r

r
r

r
r
r

r
r .
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As you can see by looking at the figure, to compose two permutations, you stack the
one that goes first in the composition (e.g., � in the example above) on top of the other
and just follow the edges from the top through the middle to the bottom. If you think
about how function composition works, this is very natural. The resulting permutation
is determined by where we begin and where we end in the composition.

We already know that the order of composition matters for functions, and so it should
matter for the composition of permutations. To make this crystal clear, let’s compose ↵

and � in the opposite order. We see that

� �↵ =

1 2 3 4 5

↵

r
r
r

r
r

r
r

r
r

r
�

r
r
r

r
r

r
r
r

r
r

=

1 2 3 4 5r
r
r

r
r

r
r
r

r
r .

The moral of the story is that composition of permutations does not necessarily commute.

Problem 4.68. Consider ↵, �, � , and � from earlier. Can you find a pair of permutations
that do commute? Can you identify any features about your diagrams that indicate why
they commuted?

Problem 4.69. Fix n 2 N. Convince yourself that any ⇢ 2 Sn composed with the identity
permutation (in either order) equals ⇢.

If Sn is going to be a group, we need to know what the inverse of a permutation is.

Problem 4.70. Given a permutation ⇢ 2 Sn, describe a method for constructing ⇢
�1.

Briefly justify that ⇢ � ⇢�1 will yield the identity permutation.

At this point, we have all the ingredients we need to prove that Sn forms a group under
composition of permutations.

Theorem 4.71. The set of permutations on n objects forms a group under the operation
of composition. That is, (Sn,�) is a group. Moreover, |Sn| = n!.

Note that it is standard convention to omit the composition symbol when writing
down compositions in Sn. For example, we will simply write ↵� to denote ↵ � �.

Permutation diagrams are fun to play with, but we need a more e�cient way of en-
coding information. One way to do this is using cycle notation. Consider ↵,�,� , and � in
S5 from the previous examples. Below I have indicated what each permutation is equal
to using cycle notation.
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↵ =

r
r
r

r
r

r
r

r
r

r = (1,2,3,4,5)

� =

r
r
r

r
r

r
r
r

r
r = (2,4,3)

� =

r
r
r

r
r

r
r

r
r

r = (1,3)(2,5,4)

� =

r
r
r

r
r
r

r
r

r
r = (1,5)

Each string of numbers enclosed by parentheses is called a cycle and if the string of
numbers has length k, then we call it a k-cycle. For example, ↵ consists of a single 5-
cycle, whereas � consists of one 2-cycle and one 3-cycle. In the case of � , we say that � is
the product of two disjoint cycles.

One observation that you hopefully made is that if an object in position i remains
unchanged, then we don’t bother listing that number in the cycle notation. However, if
we wanted to, we could use the 1-cycle (i) to denote this. For example, we could write
� = (1)(2,4,3)(5). In particular, we could denote the identity permutation in S5 using
(1)(2)(3)(4)(5). Yet, it is common to simply use (1) to denote the identity in Sn for all n.

Notice that the first number we choose to write down for a given cycle is arbitrary.
However, the numbers that follow are not negotiable. Typically, we would use the small-
est possible number first, but this is not necessary. For example, the cycle (2,4,7) could
also be written as (4,7,2) or (7,2,4).

Problem 4.72. Write down all 6 elements in S3 using cycle notation.

Problem 4.73. Write down all 24 elements in S4 using cycle notation.

Suppose � 2 Sn. Since � is one-to-one and onto, it is clear that it is possible to write �
as a product of disjoint cycles such that each i 2 {1,2, . . . ,n} appears exactly once.

Let’s see if we can figure out how to multiply elements of Sn using cycle notation.
Consider the permutations ↵ = (1,3,2) and � = (3,4) in S4. To compute the composition
↵� = (1,3,2)(3,4), let’s explore what happens in each position. Since we are doing func-
tion composition, we should work our way from right to left. Since 1 does not appear in
the cycle notation for �, we know that �(1) = 1 (i.e., � maps 1 to 1). Now, we see what
↵(1) = 3. Thus, the composition ↵� maps 1 to 3 (since ↵�(1) = ↵(�(1)) = ↵(1) = 3). Next,
we should return to � and see what happens to 3—which is where we ended a moment
ago. We see that � maps 3 to 4 and then ↵ maps 4 to 4 (since 4 does not appear in the
cycle notation for ↵). So, ↵�(3) = 4. Continuing this way, we see that � maps 4 to 3 and ↵

maps 3 to 2, and so ↵� maps 4 to 2. Lastly, since �(2) = 2 and ↵(2) = 1, we have ↵�(2) = 1.
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Putting this altogether, we see that ↵� = (1,3,4,2). Now, you should try a few. Things get
a little trickier if the composition of two permutations results in a permutation consisting
of more than a single cycle.

Problem 4.74. Consider ↵, �, � , and � for which we drew the permutation diagrams.
Using cycle notation, compute each of the following.

(a) ↵�

(b) ↵
2

(c) ↵
3

(d) ↵
4

(e) ↵
5

(f) �↵

(g) ↵
�1
�
�1

(h) �
2

(i) �
3

(j) ��↵

(k) �
3

(l) �
6

Problem 4.75. Write down the group table for S3 using cycle notation.

In Problem 4.73, one of the permutations you should have written down is (1,2)(3,4).
This is a product of two disjoint 2-cycles. It is worth pointing out that each cycle is a
permutation in its own right. That is, (1,2) and (3,4) are each permutations. It just so
happens that their composition does not “simplify” any further. Moreover, these two dis-
joint 2-cycles commute since (1,2)(3,4) = (3,4)(1,2). In fact, this phenomenon is always
true.

Theorem 4.76. Suppose ↵ and � are two disjoint cycles. Then ↵� = �↵. That is, products
of disjoint cycles commute.

Problem 4.77. Compute the orders of all the elements in S3. See Problem 4.72.

Problem 4.78. Compute the orders of any twelve of the elements in S4. See Problem 4.73.

Computing the order of a permutation is fairly easy using cycle notation once we
figure out how to do it for a single cycle. In fact, you’ve probably already guessed at the
following theorem.

Theorem 4.79. If ↵ 2 Sn such that ↵ consists of a single k-cycle, then |↵| = k.

Theorem4.80. Suppose ↵ 2 Sn such that ↵ consists ofm disjoint cycles of lengths k1, . . . , km.
Then |↵| = lcm(k1, . . . , km).k

Problem 4.81. Is the previous theorem true if we do not require the cycles to be disjoint?
Justify your answer.

Problem 4.82. What is the order of (1,4,7)(2,5)(3,6,8,9)?
kRecall that lcm(k1, . . . , km) is the least common multiple of {k1, . . . , km}.
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Problem 4.83. Draw the subgroup lattice for S3.

Problem 4.84. Now, using (1,2) and (1,2,3) as generators, draw the Cayley diagram for
S3. Look familiar?

Problem 4.85. Consider S3.

(a) Using (1,2), (1,3), and (2,3) as generators, draw the Cayley diagram for S3.

(b) In the previous part, we used a generating set with three elements. Is there a smaller
generating set? If so, what is it?

Problem 4.86. Recall that there are 4! = 24 permutations in S4.

(a) Pick any 12 permutations from S4 and verify that you can write them as words in the
2-cycles (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). In most circumstances, your words will
not consist of products of disjoint 2-cycles. For example, the permutation (1,2,3)
can be decomposed into (1,2)(2,3), which is a word consisting of two 2-cycles that
happen to not be disjoint.

(b) Using your same 12 permutations, verify that you can write them as words only in
the 2-cycles (1,2), (2,3), (3,4).

By the way, it might take some trial and error to come up with a way to do this. Moreover,
there is more than one way to do it.

As the previous exercises hinted at, the 2-cycles play a special role in the symmetric
groups. In fact, they have a special name. A transposition is a single cycle of length 2. In
the special case that the transposition is of the form (i, i +1), we call it an adjacent trans-
position. For example, (3,7) is a (non-adjacent) transposition while (6,7) is an adjacent
transposition.

It turns out that the set of transpositions in Sn is a generating set for Sn. In fact, the
adjacent transpositions form an even smaller generating set for Sn. To get some intuition,
let’s play with a few examples.

Problem 4.87. Try to write each of the following permutations as a product of transposi-
tions. You do not necessarily need to use adjacent transpositions.

(a) (3,1,5)

(b) (2,4,6,8)

(c) (3,1,5)(2,4,6,8)

(d) (1,6)(2,5,3)

The products you found in the previous exercise are called transposition representa-
tions of the given permutation.

Problem 4.88. Consider the arbitrary k-cycle (a1, a2, . . . , ak) from Sn (with k  n). Find a
way to write this permutation as a product of 2-cycles.
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Problem 4.89. Consider the arbitrary 2-cycle (a,b) from Sn. Find a way to write this
permutation as a product of adjacent 2-cycles.

The previous two problems imply the following theorem.

Theorem 4.90. Consider Sn.

(a) Every permutation in Sn can be written as a product of transpositions.

(b) Every permutation in Sn can be written as a product of adjacent transpositions.

Corollary 4.91. The set of transpositions (respectively, the set of adjacent transpositions)
from Sn forms a generating set for Sn.

It is important to point out that the transposition representation of a permutation
is not unique. That is, there are many words in the transpositions that will equal the
same permutation. However, as we shall see in the next section, given two transposition
representations for the same permutation, the number of transpositions will have the
same parity (i.e., even versus odd).

Remark 4.92. Here are two interesting facts that I will let you ponder on your own time.

(a) The group of rigid motion symmetries for a cube is isomorphic to S4. To convince
yourself of this fact, first prove that this group has 24 actions and then ponder the
action of S4 on the four long diagonals of a cube.

(b) It turns out that you can generate S4 with (1,2) and (1,2,3,4). Moreover, you can
arrange the Cayley diagram for S4 with these generators on a truncated cube, which
is depicted in Figure 4.1. Try it.

Figure 4.1. Truncated cube. [Image source: Wikipedia]

It turns out that the subgroups of symmetric groups play an important role in group
theory.

Definition 4.93. Every subgroup of a symmetric group is called a permutation group.
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The proof of the following theorem isn’t too bad, but we’ll take it for granted. After
tinkering with a few examples, you should have enough intuition to see why the theorem
is true and how a possible proof might go.

Theorem 4.94 (Cayley’s Theorem). Every finite group is isomorphic to some permutation
group. In particular, if G is a group of order n, then G is isomorphic to a subgroup of Sn.

Cayley’s Theorem guarantees that every finite group is isomorphic to a permutation
group and it turns out that there is a rather simple algorithm for constructing the cor-
responding permutation group. I’ll briefly explain an example and then let you try a
couple.

Consider the Klein four-group V4 = {e,v,h,vh}. Recall that V4 has the following group
table.

⇤ e v h vh

e e v h vh

v v e vh h

h h vh e v

vh vh h v e

If we number the elements e,v,h, and vh as 1,2,3, and 4, respectively, then we obtain
the following table.

1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Comparing each of the four columns to the leftmost column, we can obtain the corre-
sponding permutations. In particular, we obtain

e$ (1)
v$ (1,2)(3,4)
h$ (1,3)(2,4)

vh$ (1,4)(2,3).

Do you see where these permutations came from? The claim is that the set of permu-
tations {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} is isomorphic to V4. In this particular case,
it’s fairly clear that this is true. However, it takes some work to prove that this process
will always result in an isomorphic permutation group. In fact, verifying the algorithm
is essentially the proof of Cayley’s Theorem.

Since there are potentially many ways to rearrange the rows and columns of a given
table, it should be clear that there are potentially many isomorphisms that could result
from the algorithm described above.

65



CHAPTER 4. FAMILIES OF GROUPS

Here’s another way to obtain a permutation group that is isomorphic to a given group.
Let’s consider V4 again. Recall that V4 is a subset of D4, which is the symmetry group for
a square. Alternatively, V4 is the symmetry group for a non-square rectangle. Label the
corners of the rectangle 1, 2, 3, and 4 by starting in the upper left corner and continuing
clockwise. Recall that v is the action that reflects the rectangle over the vertical midline.
The result of this action is that the corners labeled by 1 and 2 switch places and the cor-
ners labeled by 3 and 4 switch places. Thus, v corresponds to the permutation (1,2)(3,4).
Similarly, h swaps the corners labeled by 1 and 4 and the corners labeled by 2 and 3, and
so h corresponds to the permutation (1,4)(2,3). Notice that this is not the same answer
we got earlier and that’s okay as there may be many permutation representations for a
given group. Lastly, vh rotates the rectangle 180� which sends ends up swapping corners
labeled 1 and 3 and swapping corners labeled by 2 and 4. Therefore, vh corresponds to
the permutation (1,3)(2,4).

Problem 4.95. Consider D4.

(a) Using the method outlined above, find a subgroup of S8 that is isomorphic to D4.

(b) Label the corners of a square 1–4. Find a subgroup of S4 that is isomorphic to D4 by
considering the natural action of D4 on the labels on the corners of the square.

Problem 4.96. Consider Z6.

(a) Using the method outlined earlier, find a subgroup of S6 that is isomorphic to Z6.

(b) Label the corners of a regular hexagon 1–6. Find a subgroup of S6 that is isomorphic
to Z6 by considering the natural action of Z6 on the labels on the corners of the
hexagon.

4.4 Alternating Groups
In this section, we describe a special class of permutation groups. To get started, let’s play
with a few exercises.

Problem 4.97. Write down every permutation in S3 as a product of 2-cycles in the most
e�cient way you can find (i.e., use the fewest possible transpositions). Now, write every
permutation in S3 as a product of adjacent 2-cycles, but don’t worry about whether your
decompositions are e�cient. Any observations about the number of transpositions you
used in each case? Think about even versus odd.

Lemma 4.98. If ↵1,↵2, . . . ,↵k is a collection of 2-cycles in Sn such that ↵1↵2 · · ·↵k = (1),
then k must be even.⇤⇤

Theorem 4.99. If � 2 Sn, then every transposition representation of � has the same parity.

The previous theorem tells us that the following definition is well-defined.
⇤⇤Use strong induction on k. Start by showing that k , 1 but that the statement is true when k = 2. Then
assume that k > 2 and proceed by induction.
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Definition 4.100. A permutation is even (respectively, odd) if one of its transposition
representations consists of an even (respectively, odd) number of transpositions.

Problem 4.101. Classify all of the permutations in S3 as even or odd.

Problem 4.102. Classify all of the permutations in S4 as even or odd.

Problem4.103. Determine whether (1,4,2,3,5) is even or odd. How about (1,4,2,3,5)(7,9)?

Problem 4.104. Consider the arbitrary k-cycle (a1, a2, . . . , ak) from Sn (with k  n). When
will this cycle be odd versus even? Briefly justify your answer.

Problem 4.105. Conjecture a statement about when a permutation will be even versus
odd. Briefly justify your answer.

And finally, we are ready to introduce the alternating groups.

Definition 4.106. The set of all even permutations in Sn is denoted by An and is called
the alternating group.

Since we referred to An as a group, it darn well better be a group!

Theorem 4.107. The set An forms a group under composition of permutations and has
order n!/2.

Problem 4.108. Find A3. What group is A3 isomorphic to?

Problem 4.109. Find A4 and then draw its subgroup lattice. Is A4 abelian?

Problem 4.110. What is the order of A5? Is A5 abelian?

Problem 4.111. What are the possible orders for elements in S6 and A6? What about S7
and A7?

Problem 4.112. Does A8 contain an element of order 15? If so, find one. If not, explain
why no such element exists.

Remark 4.113. Below are a few interesting facts about A4 and A5, which we will state
without proof.

(a) The group of rigid motion symmetries for a regular tetrahedron is isomorphic to
A4.

(b) You can arrange the Cayley diagram for A4 with generators (1,2)(3,4) and (2,3,4)
on a truncated tetrahedron, which is depicted in Figure 4.2(a).

(c) You can arrange the Cayley diagram forA5 with generators (1,2)(3,4) and (1,2,3,4,5)
on a truncated icosahedron, which is given in Figure 4.2(b). You can also arrange
the Cayley diagram for A5 with generators (1,2,3) and (1,5)(2,4) on a truncated
dodecahedron seen in Figure 4.2(c).
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(a) (b) (c)

Figure 4.2. Truncated tetrahedron, truncated icosahedron, and truncated dodecahedron.
[Image source: Wikipedia]
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