Most of what we believe, we believe because it
was told to us by someone we trusted. What I
would like to suggest, however, is that if we rely
too much on that kind of education, we could
find in the end that we have never really learned
anything.

Chapter 9 Paul Wallace, physicist & theologian

Integration

9.1 Introduction to Integration

Unlike with differentiation, we will need a number of auxiliary definitions for beginning
integration.

Definition 9.1. A set of points P = {t,t,...,t,} is a partition of the closed interval [a, b] if
a=ty<t;<---t,<t,=b.Ift;—t;_1 = b;“ for all i, we say that the partition is a regular

partition of [4,b]. In this case, we may use the notation | At :==t; —t;_; |

Problem 9.2. Give some partitions, regular and not regular, of [0,1], [2,4], and [-1,0].

Definition 9.3. We say that a real function is bounded if it has bounded image set.

Important! For the next four definitions, we assume that f is a bounded real function
with domain equal to some closed interval [a, b].

Definition 9.4. Let f be a bounded real function with domain [4,b] and let {to,t1,...,t,}
be a partition of [a,b]. We say that any sum S of the form

S= Zf(xi)(ti —ti1),
i=1

where x; € [t;_1,t;] is a Riemann sum for f on [a,b].

Definition 9.5. Let f be a bounded real function with domain [a,b] and let P = {t, ty,...,t,)}
be a partition of [a,b]. For each i € {1,2,...,n}, define {M,- =sup{f(x)|xe [ti_l,ti]}l. We
say that the sum

n

Up(f) = ZMi(ti —ti_1)

i=1

is the upper Riemann sum for f with partition P.
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Definition 9.6. Let f be a bounded real function with domain [a,b] and let P = {t, ty,...,t,}
be a partition of [a,b]. For each i € {1,2,...,n}, define ‘ m; = inf{f (x) | x € [t;_1, t;]}
that the sum

. We say

Lp(f) = Zmi(ti —ti_1)
ol

is the lower Riemann sum for f with partition P.
Problem 9.7. Draw pictures that capture the concepts of upper and lower Riemann sums.
Contrary to the name, upper and lower Riemann sums are not always Riemann sumes.

Problem 9.8. Give an example of an interval [a, b], partition P, and bounded real function
f such that U,(f) is not a Riemann sum.

Problem 9.9. Define f : [0,1] — R via

|0, x€(0,1]
f(x)_{l, x=0.

(a) Show that Up(f)> 0 for all partitions of [0, 1].
(b) Show that for any positive number ¢ there is a partition P, such that Up (f) <e.

(c) Fully describe all lower sums of f on [0,1].

k(k+1)

For the next problem, it will be useful to recall that Zi-‘zl ==

Problem 9.10. Define f : [0,1] — R via f(x) = x. For each n € N, let P, be the regular
partition of [0, 1] given by {0, %, %, n-1 1}.

(a) Compute Up.(f).
(b) Give a formula for Up (f).
(c) Compute Lp_(f).
(d) Give a formula for Lp (f).

Problem 9.11. Suppose that f is a bounded real function on [a,b] with lower bound m
and upper bound M. Show that for any partition P of [a,b], Up(f) < M(b—a) and Lp(f) >
m(b —a).

Problem 9.12. Suppose that f is a bounded real function on [a,b] and P is a partition of
[a,b]. Show that Lp(f) < Up(f).
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One consequence of Problem 9.11 is that the set of all upper, respectively lower, sums
of f over [a,b] is a bounded set. This implies that if f is a bounded real function on [a,b],
then the following supremum and infimum exist:

inf{Up(f)| P is a partition of [a, b]}
sup{Lp(f)|P is a partition of [a, b]}
This leads to the following definition.

Definition 9.13. Let f be a bounded real function with domain [4, b]. The upper integral
of f from a to b is defined via

b
J f :==inf{Up(f) | P is a partition of [a,b]}.

Similarly, the lower integral of f from a to b is defined via

b
f f ==sup{Lp(f)| P is a partition of [a, b]}.

Problem 9.14. Compute the upper and lower integrals for the function in Problem 9.9.

Problem 9.15. Define f : R — R via

L if xeQ
f(x)_{o, ifxeR\Q

1 1
Show that J f <J f.
0 0

Definition 9.16. If P and Q are partitions of [, b] such that P C Q, then we we say that Q
is a refinement of P, or that Q refines P.

Problem 9.17. Let f be a bounded real function with domain [4,b]. Prove that if P and
Q are partitions of [a,b] such that Q is a refinement of P, then Lp(f) < Lo(f) and Up(f) >

Uo(f)-

Problem 9.18. Suppose f is a bounded real function on [a,b]. Use the previous problem

to prove that
b b
<]
Ja a

Problem 9.19. Suppose f is continuous on [a,b] such that f(x) > 0 for all x € [4,b] and
that for some z € [a, ], f(z) > 0. Explain why f:f exists and then show that Lbf > 0.
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Definition 9.20. Let f be a bounded real function with domain [4,b]. We say that f is
(Riemann) integrable on [q, b] if
b b
Jor=r
a a

If f is integrable on [a,b], then the common value of the upper and lower integrals is
called the (Riemann) integral of f on [4,b], which we denote via

1+ L

Technically, we have defined the Darboux integral, with Riemann integrals coming
from so-called Riemann sums. The two notions can be proved to be equivalent.

Problem 9.21. Give an example of a function f and an interval [a, b] for which we know
fub f does not exist.

Problem 9.22. Is the function in Problem 9.9 integrable over [0,1]? If so, determine the
value of the corresponding integral. If not, explain why.

Mathematics, rightly viewed, possesses not only
truth, but supreme beauty—a beauty cold and
austere, like that of sculpture, without appeal to
any part of our weaker nature, without the
gorgeous trappings of painting or music, yet
sublimely pure, and capable of a stern
perfection such as only the greatest art can
show. The true spirit of delight, the exaltation,
the sense of being more than Man, which is the
touchstone of the highest excellence, is to be
found in mathematics as surely as poetry.

Bertrand Russell, philosopher & mathematician

9.2 Properties of Integrals

There are so many facts about integrals, and unfortunately, we do not have time to prove
them all! Nonetheless, we will hit some of the key results.

Problem 9.23. Prove that every constant real function is integrable over every interval
[a,D].

The following theorem is a useful characterization of when a function is integrable
over a closed interval.
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Problem 9.24. Suppose f is a bounded real function on [4,b]. Then f is (Riemann)
integrable if and only if for every ¢ > 0, there exists a partition P of [a,b] such that

Up(f)-Lp(f)<e.

It is important to recognize that the previous problem provides us with a technique
for determining whether a function is integrable over a closed interval, but does not nec-
essarily help us with determining the value of a particular integral.

Problem 9.25. Define f : R — R defined via f(x) = x. Using the tools we currently have
at our disposal, prove that f is integrable on [0, 1] and compute the value of the integral.

The next set of theorems will vastly expand our repertoire of functions known to be
integrable. First, we need a few definitions, which resemble the corresponding concepts
we defined for sequences in Chapter 5.

Definition 9.26. A real function f is (strictly) increasing if for each pair of points x and
y in the domain of f satisfying x <y, we have f(x) < f(). The function is nondecreasing
if under the same assumptions we have f(x) < f(y). The notions of (strictly) decreasing
and nonincreasing are defined analogously. We say that f is a monotonic function if f is
either nondecreasing or nonincreasing.

Problem 9.27. Prove that if f is a bounded monotonic real function on [a,b], then f is
integrable on [a, b].

Problem 9.28. Prove that each of the following exist. Do you know the value of any of
these integrals knowing what we know now and perhaps some well-known area formu-
las?

(a) x% dx
J1

17
(b) e X dx

J1

1
(c) V1-x2dx
0

r1
(d) V1 +x*dx
0

The next problem tells us that the integral respects scalar multiplication and sums
and differences of integrable functions.

Problem 9.29. Suppose f and g are integrable real functions on [4,b] and let ¢ € R. Prove
each of the following;:

b b
(a) The function cf is integrable on [4,b] and J cf = CJ‘ f.
a a
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b
(b) The function f + g is integrable on [4,b] and J

a

b b
(f+g)=j f+J ¢. This one is

much harder than it looks!

b
(c) The function f —g is integrable on [4,b] and J

a

b b
(f-g)= j f—j g. Consider using
parts (a) and (b) “ ¢
Unfortunately, products of integrable functions are not well behaved.

Problem 9.30. Find two real functions f and g that are integrable on [0,1] such that fg

is also integrable on [0, 1] but
1 1 1
s} J, s
0 0 0

Problem 9.31. Prove that if f is integrable on [4, b], then there exists m, M € R such that

b
m(b—a)SJ f <M(b-a).

Problem 9.32. Assume that [a,]] is a closed interval and suppose f is integrable on [, c]
and [c, b] for ¢ € (a,b). Show that f is integrable on [4,b] and that

Lbf=J:f+£bf.

Problem 9.33. Suppose f is integrable on [a, b]. Prove that for every c € R, the function g
defined via g(x) = f(x —c) is integrable on [a+ ¢, b + c] and

b b+c
J f(x)dx = f(x—c)dx.

+C

Let’s turn our attention to continuous functions. Consider using Problem 6.38 when
approaching the next problem.

Problem 9.34. Suppose f is continuous on [a, b]. Prove that for every ¢ > 0, there exists a
partition P = {ty =a,ty,...,t,_1,t, = b} of [a,b] such that for each 1 <i <wn,if u,v € [t;_1,t;],
then |f(u) - f(v)| <e.

Use the previous problem to tackle the next problem.
Problem 9.35. Prove that if f is continuous on [a,b], then f is integrable on [a, b].

Problem 9.36. Is the converse of the previous problem true? If so, prove it. Otherwise,
provide a counterexample.

Problem 9.37. Suppose f is continuous on [4, b]. Prove that

Lbf < Lb 1l
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Definition 9.38. If f is integrable on [4, b], then we define

\ [r==[s] aa [[r-0

The next result is often referred to as the Mean Value Theorem for Integrals. Do you
see why?

Problem 9.39 (Mean Value Theorem for Integrals). Suppose f is continuous on [a,b].
Prove that there exists c € [a, b] such that

b
j f = Fle)b—a).

Can you draw a picture to capture the essence of this theorem?

Problem 9.40. Suppose f is integrable on [4,b] and define g: [4,b] — R via

g(x) = ff

Prove that g is continuous on [4, b].

Mathematics has beauty and romance. It’s not a
boring place to be, the mathematical world. It’s

an extraordinary place; it’s worth spending time
there.

Marcus du Sautoy, mathematician

9.3 Fundamental Theorem of Calculus

The next two problems are the crowning achievement of calculus and of this course.
Collectively, these two problems are known as the Fundamental Theorem of Calculus.

Problem 9.41 (Fundamental Theorem of Calculus, Part 1). Suppose f is continuous on
[a,b] and define F : [4,b] — R via
X
F(x) :J f.
a

Prove that for each c € (4,b), F is differentiable at ¢ and F’(c) = f(c).

It follows from Problem 9.40 that the function F in the previous theorem is continu-
ous, as well.
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Problem 9.42 (Fundamental Theorem of Calculus, Part 2). Suppose f is a real function
whose domain includes [4,b] such that f is differentiable at each point of [4,b], and the
function f’ is continuous at each point in [a, b]. Prove that

b
f = £(b)-fa)

These are the keys that made the efforts of Newton and Leibniz into the something
one could calculate with. It is worth noting that the previous theorem is true even if f’ is
just integrable. Truly a great theorem!

It is important to point out that the function we are integrating in Problem 9.42 needs
to be continuous. Moreover, this function must be some other function’s derivative. Given
f’ in Problem 9.42, there is an entire family of functions that have the same derivative
as f, each differing by a constant, according to Problem 8.22. Each of the functions in
this family is referred to as an antiderivative of f’ and any one of them can be used to

compute fab f’ using the Fundamental Theorem of Calculus.

The crux of using the Fundamental Theorem of Calculus boils down to finding an
antiderivative of the function you are integrating. Some functions do not have nice an-
tiderivatives! For example, in part (d) of Problem 9.28, we argued that the function given

by f(x) = V1+x* is integrable on [0,1]. However, this function does not have an an-
tiderivative that you would recognize. Try asking WolframAlpha for the antiderivative of

f(x) = V1 + x* and see what you get.

Most functions you are familiar with are called elementary functions. Loosely speak-
ing, a function is an elementary function if it is equal to a sum, product, and/or com-
position of finitely many polynomials, rational functions, trigonometric functions, ex-
ponential functions, and their inverse functions. These are the functions you typically
encounter in high school, precalculus, and calculus. However, many functions are not el-
ementary. For example, the function given in Problem 9.15 is not elementary. To compli-
cate matters, many elementary functions do not have elementary antiderivatives. In fact,
some rather innocent looking elementary functions do not have elementary antideriva-
tives. The function from part (d) of Problem 9.28 is such an example. Here are a few
more elementary functions that do not have elementary antiderivatives:

o VI_ 4 . sin(x)
X
1
o e
In(x) ¥
; 2 2 e*
* sin(x“) and cos(x*) ° ¢

Determining which elementary functions have elementary antiderivatives is not an
easy task. The upshot is that utilizing the Fundamental Theorem of Calculus to compute
an integral may be difficult for seemingly innocent looking functions.

Problem 9.43. Using Problem 9.42 and your knowledge of antiderivatives from first
semester calculus, compute the integrals in parts (a) and (b) of Problem 9.28.
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Problem 9.44. According to WolframAlpha,

|
—dx=2.
J;\/}

Explain why the techniques of this chapter cannot be used to verify this. How one might
go about computing this integral? What definitions are needed?

In the broad light of day mathematicians check their equations and their
proofs, leaving no stone unturned in their search for rigour. But, at night,
under the full moon, they dream, they float among the stars and wonder at
the miracle of the heavens. They are inspired. Without dreams there is no art,
no mathematics, no life.

Michael Atiyah, mathematician
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