
All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei, astronomer & physicist

Chapter 3

The Real Numbers

In this chapter we will take a deep dive into structure of the real numbers by building
up the multitude of properties you are familiar with by starting with a collection of fun-
damental axioms. Recall that an axiom is a statement that is assumed to be true without
proof. These are the basic building blocks fromwhich all theorems are proved. It is worth
pointing out that one can carefully construct the real numbers from the natural numbers.
However, that will not be the approach we take. Instead, we will simply list the axioms
that the real numbers satisfy. Our axioms for the real numbers fall into three categories:

1. Field Axioms: These axioms provide the essential properties of arithmetic involv-
ing addition and subtraction.

2. Order Axioms: These axioms provide the necessary properties of inequalities.

3. Completeness Axiom: This axiom ensures that the familiar number line that we
use to model the real numbers does not have any holes in it.

Throughout this book, our universe of discourse will be the real numbers. Any time
we refer to a generic set, we mean a subset of real numbers. We will often refer to an
element in a subset of real numbers as a point.

3.1 The Field Axioms
We begin with the Field Axioms.

Axioms 3.1 (Field Axioms). There exist operations + (addition) and · (multiplication) on
R satisfying:

(F1) (Associativity for Addition) For all a,b,c 2 R we have (a+ b) + c = a+ (b + c);

(F2) (Commutativity for Addition) For all a,b 2 R, we have a+ b = b + a;

(F3) (Additive Identity) There exists 0 2 R such that for all a 2 R, 0 + a = a;

(F4) (Additive Inverses) For all a 2 R there exists �a 2 R such that a+ (�a) = 0;
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(F5) (Associativity for Multiplication) For all a,b,c 2 R we have (ab)c = a(bc);

(F6) (Commutativity for Multiplication) For all a,b 2 R, we have ab = ba;

(F7) (Multiplicative Identity) There exists 1 2 R such that 1 , 0 and for all a 2 R, 1a = a;

(F8) (Multiplicative Inverses) For all a 2 R \ {0} there exists a�1 2 R such that aa�1 = 1.

(F9) (Distributive Property) For all a,b,c 2 R, a(b + c) = ab + ac;

In the language of abstract algebra, Axioms F1–F4 and F5–F8 make each of R and
R \ {0} an abelian group under addition and multiplication, respectively. Axiom F9 pro-
vides a way for the operations of addition and multiplication to interact. Collectively,
Axioms F1–F9 make the real numbers a field. It follows from the axioms that the ele-
ments 0 and 1 of R are the unique additive and multiplicative identities in R. For the
next proof, suppose 0 and 00 are both additive identities in R and then show that 0 = 00.
This shows that there can only be one additive identity.

Problem 3.2. Prove that the additive identity of R is unique.

For the next problem, mimic the approach you used to prove Problem 3.2.

Problem 3.3. Prove that the multiplicative identity of R is unique.

For every a 2 R, the elements �a and a�1 (as long as a , 0) are also the unique additive
and multiplicative inverses, respectively.

Problem 3.4. Prove that every real number has a unique additive inverse.

Problem 3.5. Prove that every nonzero real number has a unique multiplicative inverse.

Since we are taking a formal axiomatic approach to the real numbers, we should make
it clear how the natural numbers are embedded in R.

Definition 3.6. We define the natural numbers, denoted by N, to be the smallest subset
of R satisfying:

(a) 1 2 N, and

(b) for all n 2 N, we have n+1 2 N.

Of course, we use the standard numeral system to represent the natural numbers, so
that N = {1,2,3,4,5,6,7,8,9,10 . . .}.

Given the natural numbers, Axiom F3/Problem 3.2 and Axiom F4/Problem 3.4 to-
gether with the operation of addition allow us to define the integers, denoted by Z, in
the obvious way. That is, the integers consist of the natural numbers together with the
additive identity and all of the additive inverses of the natural numbers.

We now introduce some common notation that you are likely familiar with. Take
a moment to think about why the following is a definition as opposed to an axiom or
theorem.
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Definition 3.7. For every a,b 2 R and n 2 Z, we define the following:

(a) a� bB a+ (�b)

(b)
a
b
B ab�1 (for b , 0)

(c) an B

8>>>>>>><>>>>>>>:

n
z}|{
aa · · ·a, if n 2 N
1, if n = 0 and a , 0
1
a�n

, if �n 2 N and a , 0

The set of rational numbers, denoted by Q, is defined to be the collection of all real
numbers having the form given in Part (b) of Definition 3.7. The irrational numbers are
defined to be R \Q.

Using the Field Axioms, we can prove each of the following statements.

Problem 3.8. Prove that for all a,b,c 2 R, we have the following:

(a) a = b if and only if a+ c = b + c;

(b) 0a = 0;

(c) �a = (�1)a;

(d) (�1)2 = 1;

(e) �(�a) = a;

(f) If a , 0, then (a�1)�1 = a;

(g) If a , 0 and ab = ac, then b = c.

(h) If ab = 0, then either a = 0 or b = 0.

Problem 3.9. Carefully prove that for all a,b 2 R, we have (a+b)(a�b) = a2�b2. Explicitly
cite where you are utilizing the Field Axioms and Problem 3.8.

Like what you do, and then you will do your
best.

Katherine Johnson, mathematician
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3.2 The Order Axioms
We now introduce the Order Axioms of the real numbers.

Axioms 3.10 (Order Axioms). For a,b,c 2 R, there is a relation < on R satisfying:

(O1) (Trichotomy Law) If a , b, then either a < b or b < a but not both;

(O2) (Transitivity) If a < b and b < c, then a < c;

(O3) If a < b, then a+ c < b + c;

(O4) If a < b and 0 < c, then ac < bc;

Given Axioms O1–O4, we say that the real numbers are a linearly ordered field. We
call numbers greater than zero positive and those greater than or equal to zero nonneg-
ative. There are similar definitions for negative and nonpositive.

Notice that the Order Axioms are phrased in terms of “<”. We would also like to be
able to utilize “>”, “”, and “�”.
Definition 3.11. For a,b 2 R, we define:

(a) a > b if b < a;

(b) a  b if a < b or a = b;

(c) a � b if b  a.

Using the inequalities on the real numbers, we can now define the following special
sets.

Definition 3.12. For a,b 2 R with a < b, we define the following sets, referred to as inter-
vals.

(a) (a,b)B {x 2 R | a < x < b}

(b) [a,b]B {x 2 R | a  x  b}

(c) [a,b)B {x 2 R | a  x < b}

(d) (a,1)B {x 2 R | a < x}

(e) (�1, b)B {x 2 R | x < b}

(f) (�1,1)B R

We analogously define (a,b] , [a,1) , and (�1, b] . Intervals of the form (a,b), (�1, b),
(a,1), and (�1,1) are called open intervalswhile [a,b] is referred to as a closed interval.
A bounded interval is any interval of the form (a,b), [a,b), (a,b], and [a,b]. For bounded
intervals, a and b are called the endpoints of the interval.
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We will always assume that any time we write (a,b), [a,b], (a,b], or [a,b) that a < b. We
will see where the terminology of “open” and “closed” comes from in Chapter 4. Context
will help us determine whether (a,b) represents a bounded open interval or an ordered
pair.

Using the Order Axioms, we can prove many familiar facts.

Problem 3.13. Prove that for all a,b 2 R, if a,b > 0, then a + b > 0; and if a,b < 0, then
a+ b < 0.

The next result extends Axiom O3.

Problem 3.14. Prove that for all a,b,c,d 2 R, if a < b and c < d, then a+ c < b + d.

Problem 3.15. Prove that for all a 2 R, a > 0 if and only if �a < 0.

Problem 3.16. Prove that if a, b, c, and d are positive real numbers such that a < b and
c < d, then ac < bd.

Problem 3.17. Prove that for all a,b 2 R, we have the following:

(a) ab > 0 if and only if either a,b > 0 or a,b < 0;

(b) ab < 0 if and only if a < 0 < b or b < 0 < a.

Problem 3.18. Prove that for all positive real numbers a and b, a < b if and only if a2 < b2.

Consider using three cases when approaching the following proof.

Problem 3.19. Prove that for all a 2 R, we have a2 � 0.

It might come as a surprise that the following result requires proof.

Problem 3.20. Prove that 0 < 1.

The previous problem together with Problem 3.15 implies that �1 < 0 as you expect.
It also follows from Axiom O3 that for all n 2 Z, we have n < n+1. We assume that there
are no integers between n and n+1.

Problem 3.21. Prove that for all a 2 R, if a > 0, then a�1 > 0, and if a < 0, then a�1 < 0.

Problem 3.22. Prove that for all a,b 2 R, if a < b, then �b < �a.
The last few results allow us to take for granted our usual understanding of which

real numbers are positive and which are negative. The next problem yields a result that
extends Problem 3.22.

Problem 3.23. Prove that for all a,b,c 2 R, if a < b and c < 0, then bc < ac.

Making learning easy does not necessarily ease
learning.

Manu Kapur, learning scientist
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3.3 Absolute Value and the Triangle Inequality
There is a special function that we can now introduce.

Definition 3.24. Given a 2 R, we define the absolute value of a, denoted |a|, via

|a|B
8>><>>:
a, if a � 0
�a, if a < 0.

Problem 3.25. Prove that for all a 2 R, |a| � 0 with equality only if a = 0.

We can interpret |a| as the distance between a and 0 as depicted in Figure 3.1.

0 a

|a|

(a) a > 0

0a

|a|

(b) a < 0

Figure 3.1: Visual representation of |a|.

Problem 3.26. Prove that for all a,b 2 R, we have |a� b| = |b � a|.
Given two points a and b, |a � b|, and hence |b � a| by the previous problem, is the

distance between a and b as shown in Figure 3.2.

a b

|a� b|

Figure 3.2: Visual representation of |a� b|.

Problem 3.27. Prove that for all a,b 2 R, |ab| = |a||b|.
In the next problem, writing ±a  b is an abbreviation for a  b and �a  b.

Problem 3.28. Prove that for all a,b 2 R, if ±a  b, then |a|  b.

Problem 3.29. Prove that for all a 2 R, |a|2 = a2.

Problem 3.30. Prove that for all a 2 R, ±a  |a|.
Problem 3.31. Prove that for all a, r 2 Rwith r nonnegative, |a|  r if and only if �r  a  r.

The letter r was used in the previous problem because it is the first letter of the word
“radius”. If r is positive, we can think of the interval (�r, r) as the interior of a one-
dimensional circle with radius r centered at 0. Figure 3.3 provides a visual interpretation
of Problem 3.31.
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0 r�r a

rr

|a|

Figure 3.3: Visual representation of |a|  r.

Problem 3.32. Prove that for all a,b, r 2 R with r nonnegative, |a � b|  r if and only if
b � r  a  b + r.

Since |a � b| represents the distance between a and b, we can interpret |a � b|  r as
saying that the distance between a and b is less than or equal to r. In other words, a is
within r units of b. See Figure 3.4.

b b + rb � r a

rr

|a� b|

Figure 3.4: Visual representation of |a� b|  r.

Consider using Problems 3.30 and 3.31 when attacking the next result, which is known
as the Triangle Inequality. This result can be extremely useful in some contexts.

Problem 3.33 (Triangle Inequality). Prove that for all a,b 2 R, |a+ b|  |a|+ |b|.

Figure 3.5 depicts two of the cases for the Triangle Inequality.

0 a b a+ b

|a+ b|

|b| |a|
(a) a � 0, b � 0

a 0 a+ b b

|a+ b|

|a| |b|
(b) a < 0, b � 0

Figure 3.5: Visual representation of two of the cases for the Triangle Inequality.

Problem 3.34. Under what conditions do we have equality for the Triangle Inequality?

Where did the Triangle Inequality get its name? Why “Triangle”? For any triangle
(including degenerate triangles), the sum of the lengths of any two sides must be greater
than or equal to the length of the remaining side. That is, if x, y, and z are the lengths
of the sides of the triangle, then z  x + y, where we have equality only in the degenerate
case of a triangle with no area. In linear algebra, the Triangle Inequality is a theorem
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about lengths of vectors. If a and b are vectors in Rn, then the Triangle Inequality states
that ka + bk  kak + kbk. Note that kak denotes the length of vector a. See Figure 3.6.
The version of the Triangle Inequality that we presented in Problem 3.33 is precisely the
one-dimensional version of the Triangle Inequality in terms of vectors.

a b

a+b

Figure 3.6: Triangle Inequality in terms of vectors.

The next result is sometimes called the Reverse Triangle Inequality.

Problem 3.35 (Reverse Triangle Inequality). Prove that for all a,b 2 R, |a� b| � ||a|� |b||.

I didn’t want to just know names of things. I
remember really wanting to know how it all
worked.

Elizabeth Blackburn, biologist

3.4 Suprema, Infima, and the Completeness Axiom
Before we introduce the Completeness Axiom, we need some additional terminology.

Definition 3.36. Let A ✓ R. A point b is called an upper bound of A if for all a 2 A, a  b.
The set A is said to be bounded above if it has an upper bound.

Problem 3.37. The notion of a lower bound and the property of a set being bounded
below are defined similarly. Try defining them.

Problem 3.38. Find all upper bounds and all lower bounds for each of the following sets
when they exist.

(a) {5,11,17,42,103}

(b) N

(c) Z

(d) (0,1]
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(e) (0,1]\Q

(f) (0,1)

(g) {42}

(h) {1n | n 2 N}

(i) {1n | n 2 N}[ {0}

(j) ;

Definition 3.39. A set A ✓ R is bounded if A is bounded above and below.

Notice that a set A ✓ R is bounded if and only if it is a subset of some bounded closed
interval.

Definition 3.40. Let A ✓ R. A point p is a supremum (or least upper bound) of A if p is
an upper bound of A and p  b for every upper bound b of A. Analogously, a point p is
an infimum (or greatest lower bound) of A if p is a lower bound of A and p � b for every
lower bound b of A.

Our next result tells us that a supremum of a set and an infimum of a set are unique
when they exist.

Problem 3.41. Prove that if A ✓ R such that a supremum (respectively, infimum) of A
exists, then the supremum (respectively, infimum) of A is unique.

In light of the previous problem, if the supremum of A exists, it is denoted by sup(A) .

Similarly, if the infimum of A exists, it is denoted by inf(A) .

Problem 3.42. Find the supremum and the infimum of each of the sets in Problem 3.38
when they exist.

It is important to recognize that the supremum or infimum of a set may or may not be
contained in the set. In particular, we have the following theorem concerning suprema
and maximums. The analogous result holds for infima and minimums.

Problem 3.43. Let A ✓ R. Prove that A has a maximum if and only if A has a supremum
and sup(A) 2 A, in which case the max(A) = sup(A).

Intuitively, a point is the supremum of a set A if and only if no point smaller than the
supremum can be an upper bound of A. The next result makes this more precise.

Problem 3.44. Let A ✓ R such that A is bounded above and let b be an upper bound of
A. Prove that b is the supremum of A if and only if for every " > 0, there exists a 2 A such
that b � " < a.

Problem 3.45. State and prove the analogous result to Problem 3.44 involving infimum.
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The following axiom states that every nonempty subset of the real numbers that has
an upper bound has a least upper bound.

Axiom 3.46 (Completeness Axiom). If A is a nonempty subset ofR that is bounded above,
then sup(A) exists.

Given the Completeness Axiom, we say that the real numbers satisfy the least up-
per bound property. It is worth mentioning that we do not need the Completeness Ax-
iom to conclude that every nonempty subset of the integers that is bounded above has a
supremum, as this follows from a generalized version of the Well-Ordering Principle (see
Problem 2.25).

Certainly, the real numbers also satisfy the analogous result involving infimum.

Problem 3.47. Prove that if A is a nonempty subset of R that is bounded below, then
inf(A) exists.

Problem 3.48. If A and B are each bounded above, characterize the supremum of each of
the following sets.

(a) A[B

(b) A\B

What are the analogous results involving infimum?

If A and B are sets, define A+BB {a+ b | a 2 A,b 2 B} .

Problem 3.49. Prove each of the following.

(a) If A and B are each bounded above, then sup(A+B) = sup(A) + sup(B).

(b) If A and B are each bounded below, then inf(A+B) = inf(A) + inf(B).

For a set A and c 2 R, define cAB {ca | a 2 A} .

Problem 3.50. Let A be a set and c 2 R. Prove each of the following.

(a) If c > 0 and A is bounded above, then sup(cA) = c sup(A).

(b) If c < 0 and A is bounded below, then c inf(A) = sup(cA).

What other properties are there relating inf, sup, and c?

Time spent thinking about a problem is always
time well spent. Even if you seem to make no
progress at all.

Paul Zeitz, mathematician
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3.5 The Archimedean Property
Our next result, called theArchimedean Property, tells us that for every real number, we
can always find a natural number that is larger. To prove this theorem, consider a proof
by contradiction and then utilize the Completeness Axiom and Problem 3.44.

Problem 3.51 (Archimedean Property). Prove that for every x 2 R, there exists n 2 N such
that x < n.

More generally, we can “squeeze” every real number between a pair of integers. The
next result is sometimes referred to at the Generalized Archimedean Property.

Problem 3.52 (Generalized Archimedean Property). Prove that for every x 2 R, there
exists k,n 2 Z such that k < x < n.

Problem 3.53. Prove that for any positive real number x, there exists N 2 N such that
0 < 1

N < x.

The next problem strengthens the Generalized Archimedean Property and says that
every real number is either an integer or lies between a pair of consecutive integers. To
tackle the next problem, let x 2 R and define L = {k 2 Z | k  x}. Use the Generalized
Archimedean Property to conclude that L is nonempty and then utilize Problem 2.25.

Problem 3.54. Prove that for every x 2 R, there exists n 2 Z such that n  x < n+1.

For the next proof, let a < b, utilize Problem 3.53 on b � a to obtain N 2 N such that
1
N < b�a, and then apply Problem 3.54 to Na to conclude that there exists n 2 N such that
n Na < n+1. Lastly, argue that n+1

N is the rational number you seek.

Problem 3.55. Prove that if (a,b) is an open interval, then there exists a rational number
p such that p 2 (a,b).

Recall that the set rational numbers is defined via

QB
⇢a
b
| a,b 2 Z and b , 0

�

while the set of irrational numbers is given by R\Q. It follows that the real numbers con-
sist of rational and irrational numbers. However, it is not obvious that irrational numbers
even exist. It is not too hard to prove that

p
2 is an irrational number. We will take this

fact for granted. It turns out that
p
2 ⇡ 1.41421356237 2 (1,2). This provides an exam-

ple of an irrational number occurring between a pair of distinct rational numbers. The
following problem is a good challenge to generalize this.

Problem 3.56. Prove that if (a,b) is an open interval, then there exists an irrational num-
ber p such that p 2 (a,b).
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Repeated applications of the previous two problems implies that every open interval
contains infinitely many rational numbers and infinitely many irrational numbers. In
light of these two problems, we say that both the rationals and irrationals are dense in
the real numbers.

If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

John von Neumann, mathematician
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