Chapter 3

Point Sets and Sequences

Definition 3.1. A point is simply an element of the real numbers R.
Definition 3.2. A point set is a nonempty subset of the real numbers.

You might well wonder why we need extra terms for these concepts. The reasons are
mainly historical. Not only do these ideas undergird much more abstract ideas of sets,
but in addition, there is a tradition worth preserving of “Moore method” courses using
this terminology since we are focusing more on the geometric properties of the real line in
this chapter.

One of the interesting things about choosing to look at the whole real number line is
that we have two additional useful axioms. They seem nearly trivial, but are very impor-
tant.

Point Set Axiom 1. If p is a point, then there is a point less than p and a point greater
than p.

Point Set Axiom 2. If p # g are two points, there is a point between them.

Note that these are closely related to the last few problems — but we are starting from
scratch here, and you should treat these are the primary axioms we need for now.

Example 3.3. If instead of R we chose as our ‘background set” some subset C of R, these
axioms might not hold. We can see this with C =[0,1]U[2, 3], with p = 0 in the first case
and p = 1,4 = 2 in the second.

Definition 3.4. We say that a point set O is a (finite) open interval if there are points a # b
such that O is the point set consisting of all points between a and b. That is,

O={x|la<x<b}=(ab).

Definition 3.5. We say that a point set [ is a (finite) closed interval if there are points a # b
such that I is the point set consisting of 4, b, and all points between a and b. That is,

I={x|a<x<b}=]ab].
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In either case, a and b are called the endpoints of the interval.
Exercise 3.6. Give some examples of point sets that are not intervals.

Definition 3.7. If M is a point set, we say that p is an accumulation point of M if every
open interval containing p also contains a point of M different from p.

To word this in set notation, p is an accumulation point of M if, for every open interval O
with p € O, there is x € O such that x e M \ {p}.

Problem 3.8. Show that if M is an open interval and p € M, then p is an accumulation
point of M.

Problem 3.9. Show that if M is a closed interval and p ¢ M, then p is not an accumulation
point of M.

Problem 3.10. Determine whether the endpoints of an open interval M are accumulation
points of M.

It is worth exploring exactly how many points it is possible or impossible for M to have.
The next two problems are just a start in investigating that.

Problem 3.11. Show that if M is a point set having an accumulation point, then M con-
tains (at least) two points. Determine whether M must contain at least 3 points.

Problem 3.12. Consider Z as a point set; show that it has no accumulation points.

Problem 3.13. Given that H and K are point sets, determine whether each of the follow-
ing is true or false. If the statement is true, prove it. Otherwise, provide a counterexam-

ple.

(a) If p is an accumulation point of H N K, then p is an accumulation point of both H
and K.

(b) If p is an accumulation point of H U K, then p is an accumulation point of H or p is
an accumulation point of K.

Problem 3.14. If M is the set of all reciprocals of elements of N, then zero is an accumu-
lation point of M.

We will now start to turn to connecting the concepts of point sets to more familiar
ones from calculus, beginning with sequences.

Definition 3.15. A sequence a is a function from N to R.

Sometimes these are called point sequences to distinguish them from other potential
sequences.

Even though technically the sequence is a function a4, for any given i € N we will
write a; = a(i). Then we may write a sequence a(1),a(2),a(3),:-- as ay,4a,,as,--—or, more
formally, {a;};2,. In order to keep the index visible (this is especially useful when we
combine sequences), we will occasionally abuse notation slightly and write {4;}:°; when
referring to the function or the image set {a(i) | i € N}.

16



CHAPTER 3. POINT SETS AND SEQUENCES

Exercise 3.16. Write down several sequences a you are familiar with. If possible, give an
algebraic formula for each a; in terms of i.

Exercise 3.17. Give an example where the image set of a sequence {4;};7, is finite.

There is a deep connection between sequences and accumulation points, which the
next few problems will elucidate. First, a definition—one you may have seen in calculus
in a different form.

Definition 3.18. We say that the (point) sequence p = {p;};2, converges to the point x if,
given an open interval S containing x, there exists an N € N such that if n > N is also a
positive integer then p, € S.

We simply say that p converges if there exists a point x to which the sequence con-
verges. One could even write p — x, informally. If a sequence does not converge to any
point x, then we say it diverges.

The first problem about this should be used as a place to test ideas for how to prove
convergence. Make sure you remember all the axioms you’ve learned and facts you've

proved about real numbers—you may need them!
Problem 3.19. Consider the sequence given by p, = % (remember, n € N is part of the

definition of a sequence). Show that p = {p;};°, converges to 0.

As you tackle the next few problems, try actually writing down the first 10 or 12
elements of each sequence.

Problem 3.20. Consider the sequence given by p, =1 — % Show that p converges to 1.

Problem 3.21. Consider the sequence with even terms p,, = 2;11—_1 and odd terms p,, | =
5. Show that p converges to 0.

Problem 3.22. Consider the sequence with odd terms p,,_; = 2111_—1 and even terms p,, =
1+ ﬁ Determine whether p converges to 0.

The following problem connects our two concepts. The most profound property of
the real numbers is part of this connection, as we’ll soon see.

Problem 3.23. Show that if p converges to the point x and for each i €N, p; # p;,1, then x
is an accumulation point of the image set of {p;}°;.

Exercise 3.24. Why do we need the restriction that p; # p;,1? Is this an absolutely neces-
sary restriction for x to be an accumulation point of the image set?

Problem 3.25. Show that the sequence {}}$°, does not converge to a point other than zero.

Problem 3.26. Show that if p converges to the point x and y is a point different from x,
then p does not converge to y.
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Basic familiar facts about sequence convergence are recalled next. In these proofs, you
may have to think a little more explicitly about what the intervals around x look like in
order to combine sequences. Try doing some examples with explicit numbers first, to get
a sense of how to approach them.

Problem 3.27. Show that if c is a number and p = {p;}72, converges to x, then cp (which
means what you think it does) converges to cx.

Problem 3.28. Show that if g = {g;};2, converges to y and p = {p;};2, converges to x, then
{qi + pi};2, (which means what you think it does) converges to y + x.

Products and quotients of sequences behave like you think they will as well, and you
can use these facts in the rest of the notes. We will include one special case soon.

Now we introduce a few more definitions that will lead us to the key axiom for the
real numbers—completeness. We’ll continue to see interplay between sequences and sets.

Definition 3.29. We say that a point set M is bounded if M is a subset of some closed
interval.

Definition 3.30. We say that a point set M is bounded above if there is a point z such that
if x € M then x < z; such a point is an upper bound.

Exercise 3.31. The property of a point set M being bounded below and the notion of a
lower bound are defined similarly; try defining them.

Exercise 3.32. Show that a point set (in R) being bounded is the same as it being bounded
above and below.

Exercise 3.33. Find all upper bounds for (0,1), [0,1], and (0,1) NQC (irrationals between
0and 1).

=, to mean more

In the next problem, remember that we ‘abuse notation’ by using {p;};

than one mathematical object.

Problem 3.34. If the sequence p converges to the point x, then the image set {p;};2, is
bounded.

You can use this concept to prove some of the more difficult sequence convergence
properties.

Problem 3.35. Show that if g converges to 0 and p converges to x, then {g; - p;};2, (which
means what you think it does) converges to 0.

Now we start to approach the heart of why calculus works.

Definition 3.36. We say p is a least upper bound (or supremum) of a point set M if p is an
upper bound of M and p < g for any other upper bound g of M.

Exercise 3.37. Define the greatest lower bound/infimum by analogy.
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Problem 3.38. Find the suprema of (0,1), and (0,1)NQC. If we could apply the definition
of supremum to (), what would its supremum be?

Problem 3.39. Prove that the supremum of a point set is unique, if it exists.

Problem 3.40. If M and N are point sets with suprema, characterize the supremum of
MUN.

If M and N are point sets, define cM :={cx|xe M}and M+ N :={x+y|xe M,y e N}.

Problem 3.41. Assuming M and N have suprema, prove either that sup(cM) is csup(M)
(given ¢ > 0) or that sup(M + N) = sup(M) + sup(N).

Exercise 3.42. Show that cinf(M) = sup(cM) if ¢ < 0. What other properties are there
relating inf, sup, and ¢?

The reason the supremum is so important is the following fundamental axiom.

Axiom of Completeness of the Real Numbers. If M is a point set and is bounded above,
then M has a supremum.

Exercise 3.43. Come up with a sequence p such that the image set is unbounded {p;};2,
and hence does not have a supremum.

Exercise 3.44. Show that the axiom is not true if one requires that the supremum be a
rational number.

It will be quite useful in the future to show that there is an equivalent way to formulate
completeness in terms of sequences.

Definition 3.45. We say that a sequence p is nondecreasing if p; < p;,, for all i € N. (The
concept of nonincreasing is defined similarly.)

Exercise 3.46. Replace the < above with < to define the notion of (strictly) increasing.
Find examples of nondecreasing sequences which are not increasing (and similarly for
nonincreasing/decreasing).

Problem 3.47. If p is a nondecreasing sequence such that the image set {p;};2, is bounded
above, then p converges to some point x.

Problem 3.48. Assuming the previous problem is true, prove the completeness axiom for
point sets.

Why is all this so important? One reason is that we can use the completeness of the
reals to prove one of the axioms (Order Axiom 5) we snuck in earlier. It may be thought
of as the ‘real’ reason why the following is true, since open intervals can be as small as we
need them to be.

Problem 3.49. Using Problem 3.47, show that for any point x, there is an n € Z such that
n>x.t

'Hint: Use a proof by contradiction.
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Problem 3.50. Let the point set M = () be bounded above, with supremum x. Prove
that there exists a nondecreasing sequence {p;} that converges to x, where the image set
{pi} M.

Definition 3.51. A sequence {b;};?, is a subsequence of {a,};", if there is a sequence of
natural numbers {n;} with n; <n;,; such that by = a,,.

|

Problem 3.53. Prove that if a sequence converges to x, so does any subsequence of that
sequence.

=

Exercise 3.52. Give some examples of subsequences of the sequence {

Exercise 3.54. Suppose {a,, ., is a subsequence of {a,};?,. If a, converges to x, does

this imply that a,, converges to x? Justify your answer.

Problem 3.55. Give a sequence {p;} with image set {p;} C N such that every sequence of
natural numbers is a subsequence of {p;}.

Problem 3.56. Prove that every sequence of real numbers has a nonincreasing or nonde-
creasing subsequence.

Problem 3.57 (Bolzano—Weierstrass Theorem). Every sequence with bounded image set
has a convergent subsequence.
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