Course Info

Title: MAT 526: Topics in Combinatorics
Semester: Fall 2024
Credits: 3
Section: 1
Time: 9:10-10:00AM MWF
Location: AMB 207

Instructor Info

  Dana C. Ernst, PhD
  AMB 176
  12:30-1:30 M, 1:30-2:30PM WF, 10:00-12:00PM Tu
  dana.ernst@nau.edu
  928.523.6852
  danaernst.com

Prerequisites

MAT 226, MAT 316, and MAT 411 with grades of C or better.

Catalog Description

Topics in enumerative, algebraic, and geometric combinatorics, chosen at instructor’s discretion; may include advanced counting techniques, graph theory, combinatorial designs, matroids, and error-correcting codes.

What is This Course All About?

This course will be an introduction to enumerative combinatorics.

An ounce of practice is worth more than tons of preaching.

Course Materials

There is no textbook for this course. All course content will be covered via lectures and homework. You should be seeking clarification about the content whenever necessary by asking questions. Here’s one of my favorite quotes about reading mathematics.

Don’t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does the proof use the hypothesis?

Rights of the Learner

As a student in this class, you have the right:

  1. to be confused,
  2. to make a mistake and to revise your thinking,
  3. to speak, listen, and be heard, and
  4. to enjoy doing mathematics.

You may encounter many defeats, but you must not be defeated.

Commitment to the Learning Community

In our classroom, diversity and individual differences are respected, appreciated, and recognized as a source of strength. Students in this class are encouraged and expected to speak up and participate during class and to carefully and respectfully listen to each other. Every member of this class must show respect for every other member of this class. Any attitudes or actions that are destructive to the sense of community that we strive to create are not welcome and will not be tolerated. In summary: Be good to each other. I would appreciate private responses to the following question: Are there aspects of your identity that you would like me to attend to when forming groups, and if so, how?

Students are also expected to minimize distracting behaviors. In particular, every attempt should be made to arrive to class on time. If you must arrive late or leave early, please do not disrupt class. Please turn off the ringer on your cell phone. I do not have a strict policy on the use of laptops, tablets, and cell phones. You are expected to be paying attention and engaging in class discussions. If your cell phone, etc. is interfering with your ability (or that of another student) to do this, then put it away, or I will ask you to put it away.

Don’t fear failure. Not failure, but low aim, is the crime. In great attempts it is glorious even to fail.

Rules of the Game

Reviewing material from previous courses and looking up definitions and theorems you may have forgotten is fair game. Since mathematical reasoning, problem solving, and critical thinking skills are part of the learning outcomes of this course, all assignments should be prepared by the student. Developing strong competencies in this area will prepare you to be a lifelong learner and give you an edge in a competitive workplace. When it comes to completing assignments for this course, unless explicitly told otherwise, you should not look to resources outside the context of this course for help. That is, you should not be consulting the web (e.g., Chegg and Course Hero), generative artificial intelligence tools (e.g., ChatGPT), mathematics assistive technologies (e.g., Wolfram Alpha and Photomath), other texts, other faculty, or students outside of our course in an attempt to find solutions to the problems you are assigned. On the other hand, you may use each other, the textbook, me, and your own intuition. You are allowed and encouraged to work together on homework. Yet, each student is expected to turn in their own work.

In this course, we may use generative AI tools (such as ChatGPT) or AI mathematics assistive technologies (such as Wolfram Alpha) to examine the ways in which these kinds of tools may inform our exploration of mathematics content. You will be informed as to when and how these tools will be used, along with guidance for attribution if/as needed. Any use of generative AI tools outside of these parameters constitutes plagiarism and a violation of the University’s Academic Integrity Policy. Please read NAU’s Academic Integrity Policy.

The ultimate goal is for each individual student to learn and to be successful. So, if you feel you need additional resources or support, please come talk to me and we will come up with an appropriate plan of action.

The following are examples (not an exhaustive list) of behaviors that could constitute cheating and/or plagiarism. You should not be doing these things.

  • Copying solutions or portions of solutions from another person
  • Submitting solutions (in part or whole) by multiple students that identically match, especially in peculiar details
  • Having another person complete your homework problems for you
  • Using any applications or websites (e.g., Course Hero, Chegg, ChatGPT, WolframAlpha, PhotoMath) to complete problems or portions of problems (even if only used on one step that you are stuck on)
  • Anything that takes solutions or portions of solutions and attempts to pass them off as your own ideas and work

The following are examples (not an exhaustive list) of behaviors that do not constitute cheating and/or plagiarism. You should be doing these things. 

  • Having a conversation with a classmate about a homework problem to compare methods and discuss strategy
  • Collaborating with a classmate on a homework problem (not copying)
  • Asking questions about a homework problem on our course forum
  • Responding to questions on our course forum in the form of feedback or guidance
  • Asking the instructor for assistance or a hint

You will become clever through your mistakes.

Homework

You are allowed and encouraged to work together on homework. However, each student is expected to turn in their own work. In general, late homework will not be accepted. However, you are allowed to turn in up to two late homework assignments with no questions asked. Unless you have made arrangements in advance with me, homework turned in after class will be considered late. You can find the list of assignments on the homework page. I reserve the right to modify the homework assignments as I see necessary.

Important! Homework will consist of a mixture of the following:

  • Problems that are modifications of examples we have discussed in class.
  • Problems that extend concepts introduced in class.
  • Problems that introduce new concepts not yet discussed in class.
  • Problems that synthesize multiple concepts that we either introduced in class or in a previous homework problem.

Some homework problems will be straightforward while others are intended to be challenging. You should anticipate not knowing what to do on some of the problems at first glance. You may have several false starts. Some frustration, maybe even a lot of frustration, should be expected. This is part of the natural learning process. On the other hand, it is not my intention to leave you to fend for yourselves. I am here to help and I want to help. You are encouraged to seek assistance from your classmates (while adhering to the Rules of the Game) and from me. Please visit office hours and ask questions on our Q&A Discussion board. I am always willing to give hints/nudges, so please ask.

If you want to sharpen a sword, you have to remove a little metal.

Your homework will always be graded for completion and some subset of the problems will be graded for correctness. Problems that are graded for completeness will be worth 1 point. Problems that are graded for correctness will either be worth 2 points or 4 points depending on the level of difficulty. Generally, quick computational problems will be worth 2 points while more substantial problems will be worth 4 points. Each 4-point problem is subject to the following rubric:

Grade Criteria
4 This is correct and well-written mathematics!
3 This is a good piece of work, yet there are some mathematical errors or some writing errors that need addressing.
2 There is some good intuition here, but there is at least one serious flaw.
1 I don't understand this, but I see that you have worked on it; come see me!
0 I believe that you have not worked on this problem enough or you didn't submit any work.

To compute your score on a given homework assignment, I will divide your total points by the total possible points to obtain a percent score. Each homework assignment has the same weight. Your overall homework grade will be worth 50% of your final grade.

I write one page of masterpiece to ninety-one pages of shit.

Exams

There will be one Midterm Exam and a cumulative Final Exam. Each exam will likely consist of both an in-class portion and a take-home portion. The in-class portion of the midterm exam is tentatively scheduled for Monday, October 14 (week 8). The in-class portion of the final exam will be on Wednesday, December 11 at 7:30-9:30AM. The Midterm Exam and the Final Exam will each be worth 25% of your final course grade. Make-up exams will only be given under extreme circumstances, as judged by me. In general, it will be best to communicate conflicts ahead of time.

The impediment to action advances action. What stands in the way becomes the way.

Attendance and Participation

Regular attendance is expected and is vital to success in this course, but you will not explicitly be graded on attendance. Students can find more information about NAU’s attendance policy on the Academic Policies page. You are also expected to respectfully participate and contribute to class discussions. This includes asking relevant and meaningful questions to both the instructor and your peers in class and on our Discord server.

I must not fear.
Fear is the mind-killer.
Fear is the little-death that brings total obliteration.
I will face my fear.
I will permit it to pass over me and through me.
And when it has gone past I will turn the inner eye to see its path.
Where the fear has gone there will be nothing.
Only I will remain.

Extra Credit

The only thing I will award extra credit for is finding typos on course materials (e.g., textbook, exams, syllabus, webpage). This includes broken links on the webpage. However, it does not include the placement of commas and such. If you find a typo, I will add one percentage point to your next exam. You can earn at most five percentage points per exam. They’re is a typo right here.

Basis for Evaluation

In summary, your final grade will be determined by your scores in the following categories.

Category Weight Notes
Homework 50% See above for requirements
Midterm Exam 25% Monday, October 14
Final Exam 25% December 11, 7:30-9:30AM

It is not the critic who counts; not the man who points out how the strong man stumbles, or where the doer of deeds could have done them better. The credit belongs to the man who is actually in the arena, whose face is marred by dust and sweat and blood; who strives valiantly; who errs, who comes short again and again, because there is no effort without error and shortcoming; but who does actually strive to do the deeds; who knows great enthusiasms, the great devotions; who spends himself in a worthy cause; who at the best knows in the end the triumph of high achievement, and who at the worst, if he fails, at least fails while daring greatly, so that his place shall never be with those cold and timid souls who neither know victory nor defeat.

Department and University Policies

You are responsible for knowing and following the Department of Mathematics and Statistics Policies (PDF) and other University policies listed here (PDF). More policies can be found in other university documents, especially the NAU Student Handbook (see appendices).

As per Department Policy, cell phones, MP3 players and portable electronic communication devices, including but not limited to smart phones, cameras and recording devices, must be turned off and inaccessible during in-class tests. Any violation of this policy will be treated as academic dishonesty.

Career Readiness Skills

In every class you take at NAU, you learn professional skills that can support your future career. There are several ways that this course can help you meet and excel at your job goals and life desires. Below is a list of in-demand skills from National Association of Colleges and Employers (NACE) you will practice in this class:

  1. Communication: Demonstrate the ability to articulate mathematical concepts clearly and concisely, whether through written explanations, oral presentations, or visual representations, ensuring comprehension by peers.
  2. Critical Thinking: Demonstrate the ability to solve mathematical problems by considering the context in which they arise, ensuring that solutions are relevant and applicable to real-world situations.
  3. Professionalism: Uphold academic integrity and accountability in mathematical assignments, demonstrating honesty and ethical behavior in the completion of individual and group tasks.
  4. Teamwork: Collaborate actively with classmates to achieve common mathematical goals, working collectively on assignments, projects, or problem-solving exercises to enhance the overall learning experience.

Some Career Readiness resources:

Getting Help

There are many resources available to get help. First, you are allowed and encouraged to work together on homework. However, each student is expected to turn in their own work. You are strongly encouraged to ask questions in our Discord discussion group, as I (and hopefully other members of the class) will post comments there for all to benefit from. You are also encouraged to stop by during my office hours and you can always email me. I am always happy to help you. If my office hours don’t work for you, then we can probably find another time to meet. It is your responsibility to be aware of how well you understand the material. Don’t wait until it is too late if you need help. Ask questions!

Tell me and I forget, teach me and I may remember, involve me and I learn.

Changes to the Syllabus

Any changes to this syllabus made during the term will be properly communicated to the class.


Dana C. Ernst

Mathematics & Teaching

  Northern Arizona University
  Flagstaff, AZ
  Website
  928.523.6852
  BlueSky
  Instagram
  Facebook
  Strava
  GitHub
arXiv
ResearchGate
  LinkedIn
Mendeley
Google Scholar
Impact Story
ORCID
  Buy me a coffee

Current Courses

  MAT 320: Foundations

About This Site

  This website was created using GitHub Pages and Jekyll together with Twitter Bootstrap.

  Unless stated otherwise, content on this site is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

  The views expressed on this site are my own and are not necessarily shared by my employer Northern Arizona University.

  The source code is on GitHub.

Land Acknowledgement

  Flagstaff and NAU sit at the base of the San Francisco Peaks, on homelands sacred to Native Americans throughout the region. The Peaks, which includes Humphreys Peak (12,633 feet), the highest point in Arizona, have religious significance to several Native American tribes. In particular, the Peaks form the Diné (Navajo) sacred mountain of the west, called Dook'o'oosłííd, which means "the summit that never melts". The Hopi name for the Peaks is Nuva'tukya'ovi, which translates to "place-of-snow-on-the-very-top". The land in the area surrounding Flagstaff is the ancestral homeland of the Hopi, Ndee/Nnēē (Western Apache), Yavapai, A:shiwi (Zuni Pueblo), and Diné (Navajo). We honor their past, present, and future generations, who have lived here for millennia and will forever call this place home.

Buy Me a Coffee